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Field automorphisms

Recall that an automorphism of a group G was an isomorphism φ : G → G .

Definition

Let F be a field. A field automorphism of F is a bijection φ : F → F such that for all
a, b ∈ F ,

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) .

In other words, φ must preserve the structure of the field.

For example, let F = Q(
√

2). Verify (HW) that the function

φ : Q(
√

2) −→ Q(
√

2) , φ : a + b
√

2 7−→ a− b
√

2 .

is an automorphism. That is, show that

φ((a + b
√

2) + (c + d
√

2)) = · · · = φ(a + b
√

2) + φ(c + d
√

2)

φ((a + b
√

2)(c + d
√

2)) = · · · = φ(a + b
√

2)φ(c + d
√

2).

What other field automorphisms of Q(
√

2) are there?
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A defining property of field automorphisms

Field automorphisms are central to Galois theory! We’ll see why shortly.

Proposition

If φ is an automorphism of an extension field F of Q, then

φ(q) = q for all q ∈ Q.

Proof

Suppose that φ(1) = q. Clearly, q 6= 0. (Why?) Observe that

q = φ(1) = φ(1 · 1) = φ(1)φ(1) = q2 .

Similarly,
q = φ(1) = φ(1 · 1 · 1) = φ(1)φ(1)φ(1) = q3 .

And so on. It follows that qn = q for every n ≥ 1. Thus, q = 1. �

Corollary
√

2 is irrational. �
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The Galois group of a field extension

The set of all automorphisms of a field forms a group under composition.

Definition

Let F be an extension field of Q. The Galois group of F is the group of
automorphisms of F , denoted Gal(F ).

Here are some examples (without proof):

The Galois group of Q(
√

2) is C2:

Gal(Q(
√

2)) = 〈f 〉 ∼= C2 , where f :
√

2 7−→ −
√

2

An automorphism of F = Q(
√

2, i) is completely determined by where it sends√
2 and i . There are four possibilities: the identity map e, and{

h(
√

2) = −
√

2
h(i) = i

{
v(
√

2) =
√

2
v(i) = −i

{
r(
√

2) = −
√

2
r(i) = −i

Thus, the Galois group of F is Gal(Q(
√

2, i)) = 〈h, v〉 ∼= V4.
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Q(ζ, 3
√

2): Another extension field of Q
Question

What is the smallest extension field F of Q that contains all roots of g(x) = x3 − 2?

Let ζ = e2πi/3 = − 1
2

+
√
3

2
i . This is a 3rd root of unity;

the roots of x3 − 1 = (x − 1)(x2 + x + 1) are 1, ζ, ζ2.

Note that the roots of g(x) are

z1 =
3
√

2 , z2 = ζ
3
√

2 , z3 = ζ2
3
√

2 .

Thus, the field we seek is F = Q(z1, z2, z3).

ζ=e2πi/3

ζ2=e4πi/3

1

C

2π
3

I claim that F = Q(ζ, 3
√

2). Note that this field contains z1, z2, and z3. Conversely,
we can construct ζ and 3

√
2 from z1 and z2, using arithmetic.

A little algebra can show that

Q(ζ,
3
√

2) = {a + b
3
√

2 + c
3
√

4 + dζ + eζ
3
√

2 + f ζ
3
√

4 : a, b, c, d , e, f ∈ Q} .

Since ζ = − 1
2

+
√
3

2
i lies in Q(ζ, 3

√
2), so does 2(ζ − 1

2
) =
√

3i =
√
−3. Thus,

Q(ζ,
3
√

2) = Q(
√
−3,

3
√

2) = Q(
√

3i ,
3
√

2) .
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Subfields of Q(ζ, 3
√

2)

What are the subfields of

Q(ζ,
3
√

2) = {a + b
3
√

2 + c
3
√

4 + dζ + eζ
3
√

2 + f ζ
3
√

4 : a, b, c, d , e, f ∈ Q} ?

Note that (ζ2)2 = ζ4 = ζ, and so Q(ζ2) = Q(ζ) = {a + bζ : a, b ∈ Q}.

Similarly, ( 3
√

4)2 = 2 3
√

2, and so Q( 3
√

4) = Q( 3
√

2) = {a + b 3
√

2 + c 3
√

4 : a, b, c ∈ Q}.

There are two more subfields. As we did before, we can arrange them in a lattice:

Q(ζ, 3
√

2)

3

����������
2

2
KKKKK 2

UUUUUUUUUUU

Q( 3
√

2)

3

Q(ζ 3
√

2)

3

����������
Q(ζ2 3

√
2)

3

rrrrrrrrrrrrrrrrr

Q(ζ)

2 JJJJJJ

Q

Look familiar?

D3
2

yyyy

3
3

4444444444

3

HHHHHHHHHHHHH

〈r〉

3

2222222222

〈f 〉
2

〈rf 〉
2

xxxx
〈r 2f 〉

2kkkkkkkkkkk

〈e〉

Compare this to the
subgroup lattice of D3.

M. Macauley (Clemson) Lecture 6.2: Field automorphisms Math 4120, Modern Algebra 6 / 7

mailto:macaule@clemson.edu


Summary so far

Roughly speaking, a field is a group under both addition and multiplication (if we
exclude 0), with the distributive law connecting these two operations.

We are mostly interested in the field Q, and certain extension fields: F ⊇ Q. Some of
the extension fields we’ve encountered:

Q(
√

2), Q(i), Q(
√

2, i), Q(
√

2,
√

3), Q(ζ,
3
√

2).

An automorphism of a field F ⊃ Q is a structure-preserving map that fixes Q.

The set of all automorphisms of F ⊇ Q forms a group, called the Galois group of F ,
denoted Gal(F ).

There is an intriguing but mysterious connection between subfields of F and
subgroups of Gal(F ). This is at the heart of Galois theory!

Something to ponder

How does this all relate to solving polynomials with radicals?
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