Lecture 6.6: The fundamental theorem of Galois theory

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Paris, May 31, 1832

The night before a duel that Évariste Galois knew he would lose, the 20-year-old stayed up late preparing his mathematical findings in a letter to Auguste Chevalier.

Hermann Weyl (1885-1955) said "This letter, if judged by the novelty and profundity of ideas it contains, is perhaps the most substantial piece of writing in the whole literature of mankind."

Fundamental theorem of Galois theory

Given $f \in \mathbb{Z}[x]$, let F be the splitting field of f, and G the Galois group. Then the following hold:
(a) The subgroup lattice of G is identical to the subfield lattice of F, but upside-down. Moreover, $H \triangleleft G$ if and only if the corresponding subfield is a normal extension of \mathbb{Q}.
(b) Given an intermediate field $\mathbb{Q} \subset K \subset F$, the corresponding subgroup $H<G$ contains precisely those automorphisms that fix K.

An example: the Galois correspondence for $f(x)=x^{3}-2$

Subfield lattice of $\mathbb{Q}(\zeta, \sqrt[3]{2})$
Subgroup lattice of $\operatorname{Gal}(\mathbb{Q}(\zeta, \sqrt[3]{2})) \cong D_{3}$.

- The automorphisms that fix \mathbb{Q} are precisely those in D_{3}.
- The automorphisms that fix $\mathbb{Q}(\zeta)$ are precisely those in $\langle r\rangle$.
- The automorphisms that fix $\mathbb{Q}(\sqrt[3]{2})$ are precisely those in $\langle f\rangle$.
- The automorphisms that fix $\mathbb{Q}(\zeta \sqrt[3]{2})$ are precisely those in $\langle r f\rangle$.
- The automorphisms that fix $\mathbb{Q}\left(\zeta^{2} \sqrt[3]{2}\right)$ are precisely those in $\left\langle r^{2} f\right\rangle$.
- The automorphisms that fix $\mathbb{Q}(\zeta, \sqrt[3]{2})$ are precisely those in $\langle e\rangle$.

The normal field extensions of \mathbb{Q} are: $\mathbb{Q}, \mathbb{Q}(\zeta)$, and $\mathbb{Q}(\zeta, \sqrt[3]{2})$.
The normal subgroups of D_{3} are: $D_{3},\langle r\rangle$ and $\langle e\rangle$.

Solvability

Definition

A group G is solvable if it has a chain of subgroups:

$$
\{e\}=N_{0} \triangleleft N_{1} \triangleleft N_{2} \triangleleft \cdots \triangleleft N_{k-1} \triangleleft N_{k}=G .
$$

such that each quotient N_{i} / N_{i-1} is abelian.

Note: Each subgroup N_{i} need not be normal in G, just in N_{i+1}.

Examples

- $D_{4}=\langle r, f\rangle$ is solvable. There are many possible chains:

$$
\langle e\rangle \triangleleft\langle f\rangle \triangleleft\left\langle r^{2}, f\right\rangle \triangleleft D_{4}, \quad\langle e\rangle \triangleleft\langle r\rangle \triangleleft D_{4}, \quad\langle e\rangle \triangleleft\left\langle r^{2}\right\rangle \triangleleft D_{4} .
$$

- Any abelian group A is solvable: take $N_{0}=\{e\}$ and $N_{1}=A$.
- For $n \geq 5$, the group A_{n} is simple and non-abelian. Thus, the only chain of normal subgroups is

$$
N_{0}=\{e\} \triangleleft A_{n}=N_{1} .
$$

Since $N_{1} / N_{0} \cong A_{n}$ is non-abelian, A_{n} is not solvable for $n \geq 5$.

Some more solvable groups

$D_{3} \cong S_{3}$ is solvable: $\{e\} \triangleleft\langle r\rangle \triangleleft D_{3}$.

The group above at right has order 24, and is the smallest solvable group that requires a three-step chain of normal subgroups.

The hunt for an unsolvable polynomial
The following lemma follows from the Correspondence Theorem. (Why?)

Lemma

If $N \triangleleft G$, then G is solvable if and only if both N and G / N are solvable.

```
Corollary
Sn is not solvable for all n\geq5. (Since }\mp@subsup{A}{n}{}\triangleleft\mp@subsup{S}{n}{}\mathrm{ is not solvable).
```


Galois' theorem

A field extension $E \supseteq \mathbb{Q}$ contains only elements expressible by radicals if and only if its Galois group is solvable.

Corollary

$f(x)$ is solvable by radicals if and only if it has a solvable Galois group.

Thus, any polynomial with Galois group S_{5} is not solvable by radicals!

An unsolvable quintic!

To find a polynomial not solvable by radicals, we'll look for a polynomial $f(x)$ with $\operatorname{Gal}(f(x)) \cong S_{5}$.

We'll restrict our search to degree- 5 polynomials, because $\operatorname{Gal}(f(x)) \leq S_{5}$ for any degree-5 polynomial $f(x)$.

Key observation

Recall that for any 5-cycle σ and 2-cycle (=transposition) τ,

$$
S_{5}=\langle\sigma, \tau\rangle .
$$

Moreover, the only elements in S_{5} of order 5 are 5-cycles, e.g., $\sigma=(a b c d e)$.

Let $f(x)=x^{5}+10 x^{4}-2$. It is irreducible by Eisenstein's criterion (use $p=2$). Let $F=\mathbb{Q}\left(r_{1}, \ldots, r_{5}\right)$ be its splitting field.

Basic calculus tells us that f exactly has 3 real roots. Let $r_{1}, r_{2}=a \pm b i$ be the complex roots, and r_{3}, r_{4}, and r_{5} be the real roots.

Since f has distinct complex conjugate roots, complex conjugation is an automorphism $\tau: F \longrightarrow F$ that transposes r_{1} with r_{2}, and fixes the three real roots.

An unsolvable quintic!

We just found our transposition $\tau=\left(r_{1} r_{2}\right)$. All that's left is to find an element (i.e., an automorphism) σ of order 5 .

Take any root r_{i} of $f(x)$. Since $f(x)$ is irreducible, it is the minimal polynomial of r_{i}. By the Degree Theorem,

$$
\left[\mathbb{Q}\left(r_{i}\right): \mathbb{Q}\right]=\operatorname{deg}\left(\text { minimum polynomial of } r_{i}\right)=\operatorname{deg} f(x)=5
$$

The splitting field of $f(x)$ is $F=\mathbb{Q}\left(r_{1}, \ldots, r_{5}\right)$, and by the normal extension theorem, the degree of this extension over \mathbb{Q} is the order of the Galois group $\operatorname{Gal}(f(x))$.

Applying the tower law to this yields

$$
|\operatorname{Gal}(f(x))|=\left[\mathbb{Q}\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right): \mathbb{Q}\left(r_{1}\right)\right] \underbrace{\left[\mathbb{Q}\left(r_{1}\right): \mathbb{Q}\right]}_{=5}
$$

Thus, $|\operatorname{Gal}(f(x))|$ is a multiple of 5 , so Cauchy's theorem guarantees that G has an element σ of order 5 .

Since $\operatorname{Gal}(f(x))$ has a 2-cycle τ and a 5-cycle σ, it must be all of S_{5}.
$\operatorname{Gal}(f(x))$ is an unsolvable group, so $f(x)=x^{5}+10 x^{4}-2$ is unsolvable by radicals!

Summary of Galois' work

Let $f(x)$ be a degree- n polynomial in $\mathbb{Z}[x]$ (or $\mathbb{Q}[x]$). The roots of $f(x)$ lie in some splitting field $F \supseteq \mathbb{Q}$.

The Galois group of $f(x)$ is the automorphism group of F. Every such automorphism fixes \mathbb{Q} and permutes the roots of $f(x)$.

This is a group action of $\operatorname{Gal}(f(x))$ on the set of n roots! Thus, $\operatorname{Gal}(f(x)) \leq S_{n}$.
There is a $1-1$ correspondence between subfields of F and subgroups of $\operatorname{Gal}(f(x))$.
A polynomial is solvable by radicals iff its Galois group is a solvable group.
The symmetric group S_{5} is not a solvable group.
Since $S_{5}=\langle\tau, \sigma\rangle$ for a 2-cycle τ and 5-cycle σ, all we need to do is find a degree-5 polynomial whose Galois group contains a 2-cycle and an element of order 5.

If $f(x)$ is an irreducible degree- 5 polynomial with 3 real roots, then complex conjugation is an automorphism that transposes the 2 complex roots. Moreover, Cauchy's theorem tells us that $\operatorname{Gal}(f(x))$ must have an element of order 5.

Thus, $f(x)=x^{5}+10 x^{4}-2$ is not solvable by radicals!

