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Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a
normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition

A subring I ⊆ R is a left ideal if

rx ∈ I for all r ∈ R and x ∈ I .

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write I E R.

Examples

nZE Z.

If R = M2(R), then I =

{[
a 0
c 0

]
: a, c ∈ R

}
is a left, but not a right ideal of R.

The set Symn(R) of symmetric n× n matrices is a subring of Mn(R), but not an
ideal.
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Ideals

Remark

If an ideal I of R contains 1, then I = R.

Proof

Suppose 1 ∈ I , and take an arbitrary r ∈ R.

Then r1 ∈ I , and so r1 = r ∈ I . Therefore, I = R. �

It is not hard to modify the above result to show that if I contains any unit, then
I = R. (HW)

Let’s compare the concept of a normal subgroup to that of an ideal:

normal subgroups are characterized by being invariant under conjugation:

H ≤ G is normal iff ghg−1 ∈ H for all g ∈ G , h ∈ H.

(left) ideals of rings are characterized by being invariant under (left)
multiplication:

I ⊆ R is a (left) ideal iff ri ∈ I for all r ∈ R, i ∈ I .
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Ideals generated by sets

Definition

The left ideal generated by a set X ⊂ R is defined as:

(X ) :=
⋂ {

I : I is a left ideal s.t. X ⊆ I ⊆ R
}
.

This is the smallest left ideal containing X .

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup 〈X 〉 generated by a subset X ⊆ G :

“Bottom up”: As the set of all finite products of elements in X ;

“Top down”: As the intersection of all subgroups containing X .

Proposition (HW)

Let R be a ring with unity. The (left, right, two-sided) ideal generated by X ⊆ R is:

Left: {r1x1 + · · ·+ rnxn : n ∈ N, ri ∈ R, xi ∈ X},
Right: {x1r1 + · · ·+ xnrn : n ∈ N, ri ∈ R, xi ∈ X},
Two-sided: {r1x1s1 + · · ·+ rnxnsn : n ∈ N, ri , si ∈ R, xi ∈ X}.
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Ideals and quotients
Since an ideal I of R is an additive subgroup (and hence normal), then:

R/I = {x + I | x ∈ R} is the set of cosets of I in R;

R/I is a quotient group; with the binary operation (addition) defined as

(x + I ) + (y + I ) := x + y + I .

It turns out that if I is also a two-sided ideal, then we can make R/I into a ring.

Proposition

If I ⊆ R is a (two-sided) ideal, then R/I is a ring (called a quotient ring), where
multiplication is defined by

(x + I )(y + I ) := xy + I .

Proof

We need to show this is well-defined. Suppose x + I = r + I and y + I = s + I . This
means that x − r ∈ I and y − s ∈ I .

It suffices to show that xy + I = rs + I , or equivalently, xy − rs ∈ I :

xy − rs = xy − ry + ry − rs = (x − r)y + r(y − s) ∈ I .
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Finite fields

We’ve already seen that Zp is a field if p is prime, and that finite integral domains
are fields. But what do these “other” finite fields look like?

Let R = Z2[x ] be the polynomial ring over the field Z2. (Note: we can ignore all
negative signs.)

The polynomial f (x) = x2 + x + 1 is irreducible over Z2 because it does not have a
root. (Note that f (0) = f (1) = 1 6= 0.)

Consider the ideal I = (x2 + x + 1), the set of multiples of x2 + x + 1.

In the quotient ring R/I , we have the relation x2 + x + 1 = 0, or equivalently,
x2 = −x − 1 = x + 1.

The quotient has only 4 elements:

0 + I , 1 + I , x + I , (x + 1) + I .

As with the quotient group (or ring) Z/nZ, we usually drop the “I ”, and just write

R/I = Z2[x ]/(x2 + x + 1) ∼= {0, 1, x , x + 1} .

It is easy to check that this is a field!
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Finite fields

Here is a Cayley diagram, and the operation tables for R/I = Z2[x ]/(x2 + x + 1):
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Theorem

There exists a finite field Fq of order q, which is unique up to isomorphism, iff q = pn

for some prime p. If n > 1, then this field is isomorphic to the quotient ring

Zp[x ]/(f ) ,

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics
over F28 = F256. This is what allows your CD to play despite scratches.
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