Lecture 7.7: Euclidean domains, PIDs, and UFDs

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the *Elements*, in which he described what is now known as the Euclidean algorithm:

Proposition VII.2 (Euclid's *Elements*)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

- If $a \mid b$, then gcd(a, b) = a;
- If a = bq + r, then gcd(a, b) = gcd(b, r).

This is best seen by an example: Let a = 654 and b = 360.

$654 = 360 \cdot 1 + 294$	gcd(654, 360) = gcd(360, 294)
$360 = 294 \cdot 1 + 66$	gcd(360, 294) = gcd(294, 66)
$294 = 66 \cdot 4 + 30$	gcd(294, 66) = gcd(66, 30)
$66 = 30 \cdot 2 + 6$	gcd(66,30) = gcd(30,6)
$30 = \frac{6}{5} \cdot 5$	gcd(30, 6) = 6.

We conclude that gcd(654, 360) = 6.

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm still works.

Definition

An integral domain R with 1 is Euclidean if it has a degree function $d: R^* \longrightarrow \mathbb{Z}$ satisfying:

- (i) non-negativity: $d(r) \ge 0 \quad \forall r \in R^*$.
- (ii) monotonicity: $d(a) \leq d(ab)$ for all $a, b \in R$.
- (iii) division-with-remainder property: For all $a, b \in R$, $b \neq 0$, there are $q, r \in R$ such that

a = bq + r with r = 0 or d(r) < d(b).

Note that Property (ii) could be restated to say: If $a \mid b$, then $d(a) \leq d(b)$;

Examples

- $R = \mathbb{Z}$ is Euclidean. Define d(r) = |r|.
- R = F[x] is Euclidean if F is a field. Define $d(f(x)) = \deg f(x)$.

Proposition

If R is Euclidean, then $U(R) = \{x \in R^* : d(x) = d(1)\}.$

Proof

 \subseteq ": First, we'll show that associates have the same degree. Take $a \sim b$ in R^* :

$$egin{array}{rcl} \mathsf{a} \mid b & \Longrightarrow & d(\mathsf{a}) \leq d(b) \ \mathsf{b} \mid \mathsf{a} & \Longrightarrow & d(b) \leq d(\mathsf{a}) \end{array} & \Longrightarrow & d(\mathsf{a}) = d(b). \end{array}$$

If $u \in U(R)$, then $u \sim 1$, and so d(u) = d(1). \checkmark

" \supseteq ": Suppose $x \in R^*$ and d(x) = d(1).

Then 1 = qx + r for some $q \in r$ with either r = 0 or d(r) < d(x) = d(1).

If $r \neq 0$, then $d(1) \leq d(r)$ since $1 \mid r$.

Thus, r = 0, and so qx = 1, hence $x \in U(R)$.

Proposition

If R is Euclidean, then R is a PID.

Proof

Let $I \neq 0$ be an ideal and pick some $b \in I$ with d(b) minimal.

Pick $a \in I$, and write a = bq + r with either r = 0, or d(r) < d(b).

This latter case is impossible: $r = a - bq \in I$, and by minimality, $d(b) \le d(r)$.

Therefore, r = 0, which means $a = bq \in (b)$. Since a was arbitrary, I = (b).

Exercises.

(i) The ideal $I = (3, 2 + \sqrt{-5})$ is not principal in R_{-5} .

(ii) If R is an integral domain, then I = (x, y) is not principal in R[x, y].

Corollary

The rings R_{-5} and R[x, y] are not Euclidean.

The following results are not overly difficult to prove, but they involve checking a number of cases.

Proposition

If $m \in \{-11, -7, -3, -2, -1, 2, 3\}$, then R_m is Euclidean with degree function d(r) = |N(r)|.

Proposition

If m < 0 and $m \notin \{-11, -7, -3, -2, -1\}$, then R_m is not Euclidean.

Corollary

 R_{-19} is a PID that is not Euclidean.

Unique factorization domains

Definition

An integral domain is a unique factorization domain (UFD) if

- (i) Every nonzero element is a product of irreducible elements;
- (ii) Every irreducible element is prime.

Examples

1. \mathbb{Z} is a UFD: Every integer $n \in \mathbb{Z}$ can be uniquely factored as a product of irreducibles (primes):

$$n=p_1^{d_1}p_2^{d_2}\cdots p_k^{d_k}.$$

This is the fundamental theorem of arithmetic.

2. The polynomial ring $\mathbb{Z}[x]$ is a UFD, because every polynomial can be factored into irreducibles polynomials. However, it is not a PID because the ideal

 $(2, x) = \{f(x) : \text{ the constant term is even}\}$

is not principle.

3. We've shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.

Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

Sketch of proof

We need to show Condition (i) holds: every element is a product of irreducibles. A ring is Noetherian if every ascending chain of ideals

 $\mathit{I}_1 \subseteq \mathit{I}_2 \subseteq \mathit{I}_3 \subseteq \cdots$

stabilizes, meaning that $I_k = I_{k+1} = I_{k+2} = \cdots$ holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian. Define

 $X = \{a \in R^* \setminus U(R) : a \text{ can't be written as a product of irreducibles}\}.$

If $X \neq \emptyset$, then pick $a_1 \in X$, $a_2 \in X \setminus (a_1)$, and $a_3 \in X \setminus (a_1, a_2)$, and so on. We get an ascending chain

 $(a_1)\subseteq (a_2)\subseteq (a_3)\subseteq \cdots$

that does not stabilize. This is impossible in a PID, so $X = \emptyset$.

Unique factorization domains

Facts

1. If m < 0, then R_m is a PID iff

$$m \in \{-1, -2, -3, -7, -11, -19, -43, -67, -163\}$$

2. If m > 0, then R_m is Euclidean (with d(r) = |N(r)|) iff

 $m \in \{2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}.$

3. R_m is a PID that is not Euclidean iff $m \in \{-19, -43, -67, -163\}$.

Open problem

For which m > 0 is R_m a PID?

We already proved the following for PIDs. It is also true for UFDs. The proof is not difficult.

Proposition

If R is a UFD, and $a, b \in R$ not both zero, then gcd(a, b) exists, and is unique up to associates.

Summary of ring types

