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Motivation

A (real-valued) function f is linear if

f (ax + by) = af (x) + bf (y).

In other words, if you can “break apart sums and pull out constants”.

Many common structures and operations have this property. For example:

derivatives:
d

dx
(au + bv) = a

du

dx
+ b

dv

dx

integrals:

∫
(au + bv) dx = a

∫
u dx + b

∫
v dx

matrices and vectors: M(ax + by) = aMx + bMy

Laplace transforms: L(af + bg) = aL(f ) + bL(g)

Solutions of certain ODEs: If y1 and y2 solve y ′′ + k2y = 0, then so does C1y1 + C2y2.

We encounter this type of linear structure all the time without realizing it.

A beginning linear algebra class usually focuses on systems of equations and matrix algebra.

An m× n matrix encodes a linear map from Rn to Rm. Elements in these sets are “vectors”.

But this is just a special case of the “bigger picture”. We’ll begin this course by peeking at
this structure, which underlies nearly every aspect of the mathematics in this class.
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Vector spaces

Definition

A vector space consists of a set V (of “vectors”) and a set F (of “scalars”; usually R or C)
that is:

closed under addition: v ,w ∈ V =⇒ v + w ∈ V

closed under scalar multiplication: v ∈ V , c ∈ F =⇒ cv ∈ V

Remark

We can deduce some easy consequences:

0 ∈ V

v ∈ V =⇒ −v ∈ V

If F = R, we say V is a “real vector space”, an “R-vector space”, or a “vector space over R”.

A “complex vector space” is defined similarly (i.e., if F = C).

Blanket assumption

Unless specified otherwise, we will assume by default that F = R.
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Vector spaces

Examples

1. V = Rn =
{

(x1, . . . , xn) | xi ∈ R
}

.

“+”: (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn) ∈ Rn

“·”: c · (x1, . . . , xn) = (cx1, . . . , cxn) ∈ Rn

2. V = Cn =
{

(z1, . . . , zn) | zi ∈ C
}

.

3. V = Rn[x] = {a0 + a1x + · · ·+ anxn | ai ∈ R}. “polynomials of degree ≤ n”

4. V = R[x] = {a0 + a1x + · · ·+ akx
k | ai ∈ R}. “polynomials of arbitrary degree”

5. V = R[[x]] = {a0 + a1x + a2x2 + · · · | ai ∈ R}. “power series”

6. V = C1(R) = (once) differentiable real-valued functions s.t. f ′(x) is continuous.

7. V = C∞(R) = infinitely differentiable functions; f (k)(x) continuous for all k.

8. V = Per2π = piecewise continuous functions with f (x) = f (x + 2π), i.e., period
T = 2π/n for some n ∈ N.

Non-examples

1. Polynomials with degree n. [e.g., (xn + 1) + (2− xn) = 3]

2. The upper half-plane in R2. [e.g., −1 · (0, 1) = (0,−1)]

3. A line (or plane) not through the origin. [e.g., 0 · v = 0]
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Subspaces

Definition

If V is a vector space (over F), then a subspace is a subset W ⊆ V that is also a vector
space (over F). We write W ≤ V .

Examples

1. V and {0} are always subspaces of V .

2. Let V =
{

(x , y , z) | x , y , z ∈ R
}

= R3 and W =
{

(x , y , 0) | x , y ∈ R
} ∼= R2.

Then W is a subspace of V .

3. Clearly, Rn[x] ( R[x] ( R[[x]] as subsets.

Rn[x] is a subspace of R[x] and R[[x]].

R[x] is a subspace of R[[x]].

4. C∞(R) is a subspace of C1(R). Also, note that

C1(R) ) C2(R) ) C3(R) ) · · · ) C∞(R).

Remark

Subspaces in Rn “look like” hyperplanes (lines, planes, etc.) through the origin.
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Subspaces

Definition

If V is a vector space (over F), then a subspace is a subset W ⊆ V that is also a vector
space (over F). We write W ≤ V .

Non-examples

1. The unit circle in R2 (⊆ R2)

2. Polynomials of degree n (⊆ Rn[x])

3. Upper half-plane (⊆ R2)

4. The line y = 2x + 3 (⊆ R2)

5. The plane {(x , y , 1) | x , y ∈ R} (⊆ R3)

6. Piecewise continuous functions with period exactly 2π (⊆ Per2π)

How to determine whether W is a subspace of V

Given a collection of “vectors” W ⊆ V , ask:

Is it closed under addition?

Is it closed under scalar multiplication?
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