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Linear maps

Definition

A linear map is a function T : V →W between vector spaces V and W satisfying

T (ax + by) = aT (x) + bT (y), for all x , y ∈ V ; a, b ∈ F.

When the vector spaces consist of functions (e.g., C∞(R), R[x], or Per2π(R)), we often use
the term linear operator.

For example,
d

dx
and

∫
are linear operators.

When our vector space is Rn, we usually just say linear “map” or “function”.

For example, f (x) = 3x and f (x1, x2) = 8x1 − 3x2 are linear functions.

Definition

The kernel (or nullspace) of a linear map T : V →W , denoted ker(T ) is the set of vectors
such that T (v) = 0:

ker(T ) =
{
v ∈ V | T (v) = 0

}
.

The image (or range) of T is the set T (V ), i.e.,

im(T ) =
{
T (v) | v ∈ V

}
.
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Examples

From calculus

Let V = W = C∞(R).

1. T = d
dx

is a linear operator:

T : f (x) 7−→ f ′(x).

2. T =
∫

is a linear operator:

T : f (x) 7−→
∫

f (x) dx .

3. The Laplace transform L is a linear operator:

L : f (t) 7−→
∫ ∞

0
f (t) e−st dt.
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Examples

Matrices

Any 2× 2 matrix is a linear map A : R2 −→ R2.[
a11 a12

a21 a22

] [
x1

x2

]
=

[
y1

y2

]
=

[
a11x1 + a12x2

a21x1 + a22x2

]
.

Facts

| detA| = scaling factor (=area of parallelogram); negative denotes reflection.

A is invertible iff detA 6= 0.

In general, an m × n matrix is a linear map A : Rn → Rm

imA and ker A are both subspaces, and they satisfy

dim(imA) + dim(ker A) = n.

Intuitively, every “dimension” either gets collapsed or persists.
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Connections between linear operators and ODEs

Preview!

Let V = W = C∞(R).

T =
d2

dx2
is a linear operator: y 7−→ y ′′.

ker(T ) =
{
y(x) | y ′′(x) = 0

}
=
{
C1x + C2 | C1,C2 ∈ R

}
.

T =
d2

dt2
+ k2 is a linear operator: y 7−→ y ′′ + k2y .

ker(T ) =
{
y(t) | y ′′ + k2y = 0

}
=
{
C1 cos kt + C2 sin kt | C1,C2 ∈ R

}
.

T =
d2

dt2
+ t2 is a linear operator: y 7−→ y ′′ + t2y .

ker(T ) =
{
y(t) | y ′′ + t2y = 0

}
.
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Connections between linear operators and ODEs

Big idea

The kernel (or nullspace) of these linear differential operators are solutions to linear
homogeneous differential equations.

Since ker(T ) is a vector space, the set of solutions (i.e., the general solution) to a linear
homogeneous ODE is a vector space.
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