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Motivation

Recall that every 2nd order linear homogeneous ODE, y” + P(x)y’ + Q(x)y = 0 can be
written in self-adjoint or “Sturm-Liouville form™:

—d%( <P(x)y,> + q(x)y = Aw(x)y, where p(x), q(x), w(x) > 0.

Many of these ODEs require the Frobenius method to solve.

Examples from physics and engineering

m Legendre's equation: (1 — x?)y” — 2xy’ + n(n+ 1)y = 0. Used for modeling spherically
symmetric potentials in the theory of Newtonian gravitation and in electricity &
magnetism (e.g., the wave equation for an electron in a hydrogen atom).

m Parametric Bessel's equation: x%y” + xy’ + (Ax? — v?)y = 0. Used for analyzing
vibrations of a circular drum.

m Chebyshev’s equation: (1 — x?)y” — xy’ + n’y = 0. Arises in numerical analysis
techniques.

m Hermite's equation: y”/ — 2xy’ + 2ny = 0. Used for modeling simple harmonic
oscillators in quantum mechanics.

m Laguerre's equation: xy”/ + (1 — x)y’ + ny = 0. Arises in a number of equations from
quantum mechanics.

m Airy's equation: y”/ — k’?xy = 0. Models the refraction of light.

v
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Legendre’s differential equation

Consider the following Sturm-Liouville problem, defined on (—1,1):

d nd 1 _ 2 _ —
— a2y =, [P =1-x% a(x)=0, w(x)=1].
The eigenvalues are A\, = n(n+ 1) for n=1,2,..., and the eigenfunctions solve Legendre's
equation:
(1—x%)y" —2xy’ + n(n+1)y =0.

For each n, one solution is a degree-n “Legendre polynomial”

_ 1 od s n
Pn() = 2t g (0 =)
o0
They are orthogonal with respect to the inner product (f, g) = / f(x)g(x) dx.
— 00
It can be checked that
1
(P Py} = Ll Pr(x)Pa(x) b = 52— b,

By orthogonality, every function f, continuous on —1 < x < 1, can be expressed using
Legendre polynomials:

o <fv P"> 1
f(x) = cnPn(x), where ¢, = PPy =(n+ 5) (f, Pn)
2 (Pa Pa)
e SBREY T
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Legendre polynomials

Po(x) =1

Pi(x) =x

Pr(x) = %(3)(2 —1)

P3(x) = %(5X3 —3x)

Pa(x) = §(35x* — 30x% + 3)

Ps(x) = £(63x° — 70x3 + 15x)

Pe(x) = 2(231x® — 315x* + 105x2 — 5)

P7(x) = 7£(429x7 — 693x° + 315x% — 35x)
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Parametric Bessel's differential equation

Consider the following Sturm-Liouville problem on [0, a]:

d V2 V2
5 ) = —y =M, [P) =% ql) ===, wix)=x].
Ix X X
For a fixed v, the eigenvalues are A\, = w,z, = a%/az, forn=1,2,....
Here, au is the nth positive root of J,(x), the Bessel functions of the first kind of order v.
The eigenfunctions solve the parametric Bessel's equation:
2y +xy' + (A% =12y =0.

Fixing v, for each n there is a solution J,n(x) := Jy(wnx).
a
They are orthogonal with repect to the inner product (f,g) = / f(x)g(x) x dx.
0
It can be checked that
a
<Jun7 Jl/ITI> = / Ju(WnX)JV(me)XdX =0, ifn#m.
0

By orthogonality, every continuous function f(x) on [0, a] can be expressed in a
“Fourier-Bessel" series:
(f, Jun)

f(x) ~ Z cndy (wnx), where ¢, = .
—0 <J1/m Jun>
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Bessel functions (of the first kind)
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Fourier-Bessel series from Jy(x)

2

00~ anlen), )= )7 (5)
n=0 -

m=0

Figure: First 5 solutions to (xy’)’ = —Ax°.
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Fourier-Bessel series from J3(x)

3 1
The Fourier-Bessel series using J3(x) of the function f(x) = X 0<x <10
0 x>10
S = 1 X\ 2m+3
F(x) ~ > cnds(wnx/10), L) =3 (-1 ( ) .
n=0

o m!(3 4+ m)! 2
f
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Figure: First 5 partial sums to the Fourier-Bessel series of f(x) using J3
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Chebyshev's differential equation

Consider the following Sturm-Liouville problem on [—1, 1]:

Sy [P = VISR =0, wi) = i)

The eigenvalues are A\, = n? for n=1,2,..., and the eigenfunctions solve Chebyshev's
equation:
(1=x%)y" —xy' +n’y =0.

For each n, one solution is a degree-n “Chebyshev polynomial,” defined recursively by
To(x) =1, Ti(x) = x, Tot1(x) = 2xTp(x) — Th—1(x).

They are orthogonal with repect to the inner product (f,g) = /11 % dx.

It can be checked that

L Ton(x) Ta(x) Labmn m#0,n#0
Tm: Ty) = ——"dx = 2 ’
< ) /71 V1—x2 x ™ m=n=0

By orthogonality, every function f(x), continuous for —1 < x < 1, can be expressed using
Chebyshev polynomials:
<f7 Tn> _ 2<

Ty " f, Ta), if n,m>0.
n, n

oo
f(x) ~ Z cn Ta(x), where ¢, =
n=0

M. Macauley (Clemson) Lecture 4.6: Some special orthogonal functions Advanced Engineering Mathematics 9/13


mailto:macaule@clemson.edu

Chebyshev polynomials (of the first kind)

To(x) =1 Ta(x) =8x* —8x2 +1

Ti(x) = x Ts(x) = 16x> — 20x3 + 5x

To(x) =2x2 -1 To(x) = 32x5 — 48x* +18x% — 1
T3(x) = 4x3 — 3x T7(x) = 64x7 — 112x> + 56x3 — 7x

1.0

g n=0
[ n=1
0.5F
n=4
X "/ /

—0.5L n=>5

T, (x)

-1.0

.
<

71.(") - 705 T IO.()I - ‘0.5I
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Hermite's differential equation

Consider the following Sturm-Liouville problem on (—o0, c0):

d d
ey =ae ™y [ = =0, w(x)=e7].
dx dx
The eigenvalues are A\, = 2n for n =1,2,..., and the eigenfunctions solve Hermite's
equation:

y"” —2xy’ +2ny = 0.
For each n, one solution is a degree-n “Hermite polynomial,” defined by

2 d" 2 d\n
Hn(x) = (—1)"e* ol X = (2X*$) -1

oo
They are orthogonal with repect to the inner product (f, g) = / F(x)g(x)e*)(2 dx.
(e o)

It can be checked that

(Him, Hp) = / Hin(x)Hn(x)e ™" dx = /72" 118 mp.

—o0

o0

By orthogonality, every function f(x) satisfying f_oo
Hermite polynomials:

e dx < oo can be expressed using

(f, Hny _ (f,Hn)
(Hp, Hy) — /m2rnl’

oo
f(x) ~ Zc,,H,,(x), where ¢, =
n=0

M. Macauley (Clemson) Lecture 4.6: Some special orthogonal functions Advanced Engineering Mathematics 11 /13


mailto:macaule@clemson.edu

Hermite polynomials

Ho(x) = Ha(x) = 16x* — 48x2 + 12
Hi(x) = 2x Hs(x) = 32x> — 160x3 + 120x
Ha(x) = 4x? — 2 He(x) = 64x% — 480x* 4 720x? — 120
Hz(x) = 8x3 — 12x Hz(x) = 128x7 — 1344x> + 3360x3 — 1680x
Hermite (physicists’) Polynomials
T T T T
= —___’___:
:\
. =
n=0 ——
-20 n=1 .
n=2 ——
30 |- n=3 1
n=4 ——
-40 |- n=5 ——
1 | | | |
2 1 0 1 2 3

X
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Hermite functions

The Hermite functions can be defined from the Hermite polynomials as
_l X2 _l X dn
Pn(x) = (2"nlV/7) " 2e7 T Ho(x) = (=1)"(2"nlv/m) 2e” 2 " ne_xz.
Ix

N}

They are orthonormal with respect to the inner product

)= [ rlxelx) dx

Every real-valued function f such that ffooo f2 dx < co “can be expressed uniquely” as

o0

f(x)¥n(x) dx.

700 ~ - enba(x) e, where e = (F) = [
n=0

These are solutions to the time-independent Schrédinger ODE: —y”’ 4+ x?y = (2n+ 1)y.

o8y =] =] i ] T
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