Lecture 2.5: Power series solutions to differential equations

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Beyond constant coefficients

Example 1

Find the general solution to $x^2y'' + xy' - y = 0$.

Definition

A Cauchy-Euler equation is an ODE of the form

$$ax^2y'' + bxy' + cy = 0.$$

Assume there exists a solution of the form $y(x) = x^r$. Plugging this back in yields a degree-2 polynomial in r. There are three cases:

- 1. Distinct real roots, r_1, r_2 : $y(x) = C_1 x^{r_1} + C_2 x^{r_2}$.
- 2. Complex roots, $r = a \pm bi$: $y(x) = C_1 x^a \cos(b \ln x) + C_2 x^a \sin(b \ln x)$.
- 3. Repeated root, r: $y(x) = C_1 x^r + C_2 \ln(x) x^r$.

A harder example

Example 2

Find the general solution to y'' - 4xy' + 12y = 0.

Example 2 (cont.)

The homogeneous ODE y'' - 4xy' + 12y = 0 has a power series solution $y(x) = \sum_{n=0}^{\infty} a_n x^n$, where the coefficients satisfy the following recurrence relation: $a_{n+2} = \frac{4(n-3)}{(n+2)(n+1)}a_n$.

Summary

The "power series method"

To solve y'' - 4xy' + 12y = 0 for y(x), we took the following steps:

- 1. Assumed the solution has the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$.
- 2. Plugged the power series for y(x) back into the ODE.

3. Combined into a single sum
$$y(x) = \sum_{n=0}^{\infty} [$$
 $\cdots]x^n = 0.$

4. Set the x^n coefficient $[\cdots]$ equal to zero to get a recurrence $a_{n+2} = f(a_n, a_{n-1})$.

An example from physics

Legendre's equation

Find the general solution to $(1 - x^2)y'' - 2xy' + \ell(\ell + 1)y = 0$, where $\ell \in \mathbb{N}$ is fixed.