Lecture 2.5: Power series solutions to differential equations

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Beyond constant coefficients

Example 1

Find the general solution to $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.

Definition

A Cauchy-Euler equation is an ODE of the form

$$
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0
$$

Assume there exists a solution of the form $y(x)=x^{r}$. Plugging this back in yields a degree-2 polynomial in r. There are three cases:

1. Distinct real roots, $r_{1}, r_{2}: y(x)=C_{1} x^{r_{1}}+C_{2} x^{r_{2}}$.
2. Complex roots, $r=a \pm b i: y(x)=C_{1} x^{a} \cos (b \ln x)+C_{2} x^{a} \sin (b \ln x)$.
3. Repeated root, $r: y(x)=C_{1} x^{r}+C_{2} \ln (x) x^{r}$.

A harder example

Example 2

Find the general solution to $y^{\prime \prime}-4 x y^{\prime}+12 y=0$.

Example 2 (cont.)

The homogeneous ODE $y^{\prime \prime}-4 x y^{\prime}+12 y=0$ has a power series solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, where the coefficients satisfy the following recurrence relation: $a_{n+2}=\frac{4(n-3)}{(n+2)(n+1)} a_{n}$.

Summary

The "power series method"

To solve $y^{\prime \prime}-4 x y^{\prime}+12 y=0$ for $y(x)$, we took the following steps:

1. Assumed the solution has the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
2. Plugged the power series for $y(x)$ back into the ODE.
3. Combined into a single sum $y(x)=\sum_{n=0}^{\infty}[\quad \cdots \quad] x^{n}=0$.
4. Set the x^{n} coefficient $[\cdots]$ equal to zero to get a recurrence $a_{n+2}=f\left(a_{n}, a_{n-1}\right)$.

An example from physics

Legendre's equation

Find the general solution to $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\ell(\ell+1) y=0$, where $\ell \in \mathbb{N}$ is fixed.

