Lecture 2.6: Singular points and the Frobenius method

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Quick review of power series

Definitions

A power series centered at x_{0} is a limit of partial sums:

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n}\left(x-x_{0}\right)^{n}
$$

It converges at x if the sequence of partial sums converges. Otherwise, it diverges.

Examples

- The power series $\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \frac{1}{n!} x^{n}$ converges to e^{x} for all $x \in(-\infty, \infty)$.
- The power series $\lim _{N \rightarrow \infty} \sum_{n=0}^{N}(-1)^{n} x^{n}$ converges to $\frac{1}{1+x}$ for all $x \in(-1,1)$. It diverges at $x=1$.

Radius of convergence

The largest number R such that if $\left|x-x_{0}\right|<R$, then $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges.

Ordinary vs. singular points of ODEs

Definitions

A function $f(x)$ is real analytic at x_{0} if $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ for some $R>0$.

Definition

Consider the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$.

- The point x_{0} is an ordinary point if $P(x)$ and $Q(x)$ are real analytic at x_{0}.
- Otherwise x_{0} is a singular point, which is:
- regular if $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are real analytic.
- irregular otherwise.

Examples (at $x_{0}=0$)

- Ordinary: $y^{\prime \prime}+x y+y=0$.
- Regular singular: $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$.
- Irregular singular: $x^{2} y^{\prime \prime}+y^{\prime}+y=0$.

When does an ODE have a power series solution?

Theorem of Frobenius

Consider an ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)$. If x_{0} is an ordinary point, and $P(x), Q(x)$, and $f(x)$ have radii of convergence R_{P}, R_{Q}, and R_{f}, respectively, then there is a power series solution

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, \quad R=\min \left\{R_{P}, R_{Q}, R_{f}\right\}
$$

If x_{0} is a regular singular point and $\left(x-x_{0}\right) P(x),\left(x-x_{0}\right)^{2} Q(x)$, and $f(x)$ have radii of convergence R_{P}, R_{Q}, and R_{f}, respectively, then there is a generalized power series solution

$$
y(x)=\left(x-x_{0}\right)^{r} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, \quad R=\min \left\{R_{P}, R_{Q}, R_{f}\right\}
$$

for some constant r.

Example

Find the general solution to $2 x y^{\prime \prime}+y^{\prime}+y=0$.

Applications of the Frobenius method

Examples from physics and engineering

- Cauchy-Euler equation: $x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0$. Arises when solving Laplace's equation in polar coordinates.
- Legendre's equation: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$. Used for modeling spherically symmetric potentials in the theory of Newtonian gravitation and in electricity \& magnetism (e.g., the wave equation for an electron in a hydrogen atom).
- Chebyshev's equation: $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$. Arises in numerical analysis techniques.
- Hermite's equation: $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$. Used for modeling simple harmonic oscillators in quantum mechanics.
- Bessel's equation: $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$. Used for analyzing vibrations of a circular drum.
- Laguerre's equation: $x y^{\prime \prime}+(1-x) y^{\prime}+n y=0$. Arises in a number of equations from quantum mechanics.
- Airy's equation: $y^{\prime \prime}-k^{2} x y=0$. Models the refraction of light.

