Lecture 3.5: Complex inner products and Fourier series

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Review of complex numbers

Euler's formula
■ $e^{i \theta}=\cos \theta+i \sin \theta$
■ $e^{-i \theta}=\cos \theta-i \sin \theta$
■ $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$
$\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$

Real vs. complex vector spaces

Until now, we have primarily been dealing with \mathbb{R}-vector spaces. Things are a little different with \mathbb{C}-vector spaces.

To understand why, compare the notion of norm for real vs. complex numbers.

- For any real number $x \in \mathbb{R}$, its norm (distance from $\mathbf{0}$) is $|x|=\sqrt{x^{2}} \in \mathbb{R}$.
- For any complex number $z=a+b i \in \mathbb{C}$, its norm (distance from 0) is defined by

$$
|z|:=\sqrt{z \bar{z}}=\sqrt{(a+b i)(a-b i)}=\sqrt{a^{2}+b^{2}} .
$$

Let's now go from \mathbb{R} and \mathbb{C} to \mathbb{R}^{2} and \mathbb{C}^{2}.

- For any vector $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in \mathbb{R}^{2}$, its norm (distance from $\mathbf{0}$) is

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{\mathbf{v}^{\top} \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}} .
$$

- For any $\mathbf{z}=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right] \in \mathbb{C}^{2}$, with $z_{1}=a+b i, z_{2}=c+d i$, its norm is defined by

$$
\|\mathbf{z}\|:=\sqrt{\overline{\mathbf{z}}^{T} \mathbf{z}}=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}
$$

For example, let's compute the norms of $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \in \mathbb{R}^{2}$ and $\mathbf{v}=\left[\begin{array}{l}i \\ i\end{array}\right] \in \mathbb{C}^{2}$.

Real vs. complex inner products

Big idea

The norm in an \mathbb{R}-vector space is defined using a real inner product, e.g.,

$$
\mathbf{v} \cdot \mathbf{w}:=\mathbf{w}^{T} \mathbf{v}=\left[\begin{array}{lll}
w_{1} & \cdots & w_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\sum v_{i} w_{i}
$$

The norm in a \mathbb{C}-vector space is defined using a complex inner product, e.g.,

$$
\mathbf{z} \cdot \mathbf{w}:=\overline{\mathbf{w}}^{T} \mathbf{z}=\left[\begin{array}{lll}
\overline{w_{1}} & \cdots & \overline{w_{n}}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right]=\sum z_{i} \overline{w_{i}} .
$$

Definition

Let V be an \mathbb{C}-vector space. A function $\langle-,-\rangle: V \times V \rightarrow \mathbb{C}$ is a (complex) inner product if it satisfies (for all $\mathbf{u}, \mathbf{v}, \mathbf{w}, \in V, c \in \mathbb{C}$):
(i) $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$
(ii) $\langle c \mathbf{v}, \mathbf{w}\rangle=c\langle\mathbf{v}, \mathbf{w}\rangle$ and $\langle\mathbf{v}, \mathrm{cw}\rangle=\bar{c}\langle\mathbf{v}, \mathbf{w}\rangle$
(iii) $\langle\mathbf{v}, \mathbf{w}\rangle=\overline{\langle\mathbf{w}, \mathbf{v}\rangle}$
(iv) $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$, with equaility if and only if $\mathbf{v}=0$.

Periodic functions as a \mathbb{C}-vector space

Recall the \mathbb{R}-vector space (we'll abuse terminology and allow infinite sums)

$$
\operatorname{Per}_{2 \pi}(\mathbb{R}):=\operatorname{Span}\{\{1, \cos x, \cos 2 x, \ldots\} \cup\{\sin x, \sin 2 x, \ldots\}\}
$$

Let $\operatorname{Per}_{2 \pi}(\mathbb{C})$ denote the same vector space but with coefficients from \mathbb{C}. Since

$$
\cos n x=\frac{e^{i n x}+e^{-i n x}}{2}, \quad \sin n x=\frac{e^{i n x}-e^{-i n x}}{2 i}
$$

a better way to write $\operatorname{Per}_{2 \pi}(\mathbb{C})$ is using a different basis:

$$
\operatorname{Per}_{2 \pi}(\mathbb{C}):=\operatorname{Span}\left\{\ldots, e^{-2 i x}, e^{-i x}, 1, e^{i x}, e^{2 i x}, \ldots\right\}
$$

It turns out that this basis is orthonormal with respect to the inner product

$$
\langle f, g\rangle:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

It is quite easy to verify this:

$$
\left\langle e^{i n x}, e^{i m x}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} \overline{e^{i m x}} d x= \begin{cases}1 & m=n \\ 0 & m \neq n\end{cases}
$$

Formulas for the Fourier coefficients

Definition / Theorem

If $f(x)$ is a piecewise continuous $2 L$-periodic function, then its complex Fourier series is

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \frac{i n x}{L}}=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} e^{\frac{i \pi n x}{L}}+c_{-n} e^{-\frac{i \pi n x}{L}}\right)
$$

where the complex Fourier coefficients are

$$
c_{0}=\langle f, 1\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \quad c_{n}=\left\langle f, e^{\frac{i \pi n x}{L}}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-\frac{i \pi n x}{L}} d x
$$

Computations

Example 1: square wave

Find the complex Fourier series of $f(x)= \begin{cases}1, & 0<x<\pi \\ -1, & \pi<x<2 \pi\end{cases}$

Computations

Example 2

Compute the complex Fourier series of the 2π-periodic extension of the function e^{x} defined on $-\pi<0<\pi$.

