Lecture 6.4: Solving PDEs with Fourier transforms

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Introduction

Let \mathcal{S} be subspace of $\mathcal{C}^{\infty}(\mathbb{R})$ consisting of functions that decay as $x \rightarrow \pm \infty$ faster than any polynomial:

$$
\mathcal{S}=\left\{u \in \mathcal{C}^{\infty}(\mathbb{R}):\left|\frac{d^{k} u}{d x^{k}}\right| \leq C|x|^{-n} \text { as }|x| \rightarrow \infty, \quad \forall k \in \mathbb{N}, n \in \mathbb{Z}\right\}
$$

These are the Schwartz class of functions, and $u \in \mathcal{S}$ iff $\widehat{u} \in \mathcal{S}$.

Definition

The Fourier transform of $f \in \mathcal{S}$ is defined by

$$
\mathcal{F} f=\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

Fourier transforms and its properties

Definition

For a function $u(x, t)$ of two variables, define its Fourier transform by

$$
(\mathcal{F} u)(\omega, t)=\widehat{f}(\omega, t)=\int_{-\infty}^{\infty} u(x, t) e^{-i \omega x} d x
$$

Remark

The Fourier transform turns x-derivatives into multiplication, and leaves t-derivatives unchanged:

- $\left(\mathcal{F} u_{x}\right)(\omega, t)=(-i \omega) \widehat{u}(\omega, t)$
- $\left(\mathcal{F} u_{x x}\right)(\omega, t)=(-i \omega)^{2} \widehat{u}(\omega, t)$
- $\left(\mathcal{F} u_{t}\right)(\omega, t)=\widehat{u}_{t}(\omega, t)$.

Convolution theorem

For functions f and g,

$$
\mathcal{F}(f * g)(\omega)=\widehat{f}(\omega) \widehat{g}(\omega)
$$

By taking the inverse Fourier transform of both sides, it follows that

$$
(f * g)(x)=\mathcal{F}^{-1}(\widehat{f}(\omega) \widehat{g}(\omega))
$$

Fourier transform of the Gaussian function

Example 1

Compute the Fourier transform for the Gaussian function $u(x)=e^{-a x^{2}}$, where $a>0$.

Solving an ODE with the Fourier transform

Example 2

Solve the following ODE for $u(x)$, given some forcing term $f(x) \in \mathcal{S}$:

$$
u^{\prime \prime}-u=f(x) .
$$

Solving a PDE with the Fourier transform

Example 3

Solve the following Cauchy problem for the heat equation, given some $f(x) \in \mathcal{S}$:

$$
u_{t}-k u_{x x}=0, \quad u(x, 0)=f(x)
$$

