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Higher dimensional PDEs

Recall the del operator ∇ from vector calculus:

∇ =
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, . . . ,
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)
, ∆ := ∇·∇ =
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In Rn

Heat equation: ut = c2∆u

Wave equation: utt = c2∆u

Remark

Steady state solutions:

occur for the heat equation (heat dissipates)

do not occur for the wave equation (waves propagate)

Definition

A steady-state solution means ut = 0. Thus, all steady-state solutions satisfy
ut = c2∆u = 0, i.e.,

∆u = 0 =⇒
∂2u

∂x2
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+
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∂x2
2

+ · · ·+
∂2u

∂x2
n

= 0.

A function u is harmonic if ∆u = 0.
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Properties of harmonic functions

Key properties

The graphs of harmonic functions (∆f = 0) are as flat as possible.

If f is harmonic, then for any closed bounded region R, the function f achieves its
minimum and maximum values on the boundary, ∂R.
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Examples of harmonic functions
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Solving Laplace’s equation on a bounded domain

Example 1a

Solve the following BVP for Laplace’s equation:

uxx + uyy = 0, u(0, y) = u(x , 0) = u(π, y) = 0, u(x , π) = x(π − x) .
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Solving Laplace’s equation on a bounded domain

Example 1b

Solve the following BVP for Laplace’s equation:

uxx + uyy = 0, u(0, y) = u(x , 0) = u(x , π) = 0, u(π, y) = y(π − y) .
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Solving Laplace’s equation on a bounded domain

Example 1c

Solve the following BVP for Laplace’s equation:

uxx + uyy = 0, u(0, y) = u(x , 0) = 0, u(x , π) = x(π − x), u(π, y) = y(π − y) .
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Unbounded domains and Fourier transforms

Example 2

Solve the following BVP for Laplace’s equation, where x ∈ R and y > 0, and the solution u
is bounded as y →∞:

uxx + uyy = 0, u(x , 0) = f (x).
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