Math 4120/6120, Summer 2019

Study guide: Midterm 1.

Note: This is just a guide, not an all-inclusive list.

Definitions to memorize.

- (1) A group G. (The "official" definition.)
- (2) A left coset xH of a subgroup $H \leq G$.
- (3) A normal subgroup $H \lhd G$.
- (4) The index [G:H] of a subgroup $H \leq G$.
- (5) The direct product $A \times B$ of two groups A and B.
- (6) The quotient G/H of a group G by a normal subgroup $H \triangleleft G$.
- (7) The normalizer $N_G(H)$ of a subgroup $H \triangleleft G$.
- (8) The conjugacy class $cl_G(x)$ of an element $x \in G$.
- (9) The center Z(G) of a group.

Useful examples.

- (1) For each of the following groups, know what its subgroup lattice looks like and which subgroups are normal: V_4 , S_3 , D_4 , Q_8 , A_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, C_n (equivalently, \mathbb{Z}_n).
- (2) Know how to find the center Z(G) of each group G above.
- (3) Learn the seven frieze groups, their generators, Cayley diagrams, and presentation.

Useful facts and techniques.

- (1) How to multiply permutations in cycle notation.
- (2) Several standard generating sets for the symmetric group, S_n .
- (3) What Lagrange's theorem says about the a group's subgroups, and the relationship between |G|, |H|, and [G:H].
- (4) How to multiply elements in a quotient group, G/N.
- (5) How to find the conjugacy class of an element $g \in G$.
- (6) Two different ways to show that a subset $H \subseteq G$ is a subgroup.
- (7) Three different ways to show that a subgroup $H \leq G$ is normal.
- (8) Two elements in S_n are conjugate iff they have the same cycle type.

Proofs to learn.

- (1) Prove that the identity element of a group is unique.
- (2) Prove that every element in a group has a unique inverse.
- (3) Prove that if $\{H_{\alpha} \mid \alpha \in I\}$ is a collection of subgroups, then $\bigcap_{\alpha \in I} H_{\alpha}$ is a subgroup.
- (4) Prove that xH = H if and only if $x \in H$.
- (5) Prove that if [G:H] = 2, then $H \triangleleft G$.
- (6) Prove that if $K \leq H \leq G$ and $K \triangleleft G$, then $K \triangleleft H$.
- (7) Prove that the center $Z(G) = \{z \in G \mid gz = zg, \forall g \in G\}$ is a subgroup of G and that it is normal.
- (8) Let $H \triangleleft G$. Prove that multiplication of cosets is well-defined: if $a_1H = a_2H$ and $b_1H = b_2H$, then $a_1H \cdot b_1H = a_2H \cdot b_2H$. Additionally, show that G/H is a group under this binary operation.
- (9) Prove that if G is abelian and $H \leq G$, then G/H is abelian.
- (10) Prove that the normalizer $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ is a subgroup of G.
- (11) Prove that $cl_G(x) = \{x\}$ if and only if $x \in Z(G)$.

Study guide: Midterm 2.

Definitions to memorize.

- (1) A homomorphism ϕ from a group G to a group H.
- (2) An *isomorphism* ϕ from a group G to a group H.
- (3) The kernel ker ϕ of a homomorphism $\phi: G \to H$.
- (4) What it means for a map $f: G/N \to H$ to be well-defined.
- (5) The commutator subgroup G' of a group G, and the abelianization G/G'.
- (6) A group action of G on a set S.
- (7) The *orbit* of an element $s \in S$.
- (8) The stabilizer of an element $s \in S$.
- (9) The *fixed points* of a group action.
- (10) A *p*-group, and a Sylow *p*-subgroup of a group G.

Useful facts and techniques.

- (1) $\mathbb{Z}_n \times \mathbb{Z}_m$ iff gcd(n,m) = 1.
- (2) Learn to classify all finite abelian groups of a fixed order.
- (3) There are two ways to prove that $G/N \cong H$: Either construct a map $G/N \to H$ and prove it is a well-defined bijective homorphism, or construct a map $\phi: G \to H$ and prove it is an onto homomorphism with ker $\phi = N$.
- (4) Learn the statement of the Correspondence Theorem: There is a 1–1 correspondence between subgroup of G/N and subgroups of G that contain N. Moreover, every subgroup of G/N is of the form H/N for some $N \leq H \leq G$.
- (5) Learn how to identify the commutator subgroup of G just from the subgroup lattice.
- (6) $\operatorname{Aut}(\mathbb{Z}_n) \cong U_n$.
- (7) The orbit-stabilizer theorem: If G acts on S, then $|G| = |\operatorname{Orb}(s)| \cdot |\operatorname{Stab}(s)|$ for any $s \in S$.
- (8) Learn what the orbits, stabilizers, and fixed points are of the following actions:
 - (i) G acting on itself by right multiplication.
 - (ii) G acting on itself by conjugation.
 - (iii) G acting on its subgroups by conjugation.
 - (iv) G acting on its right cosets by right multiplication.
- (9) Learn how to use the 3rd Sylow theorem to show that a group of a certain order is simple. (Usually, by showing that $n_p = 1$ for some prime p.)

Proofs to learn.

- (1) Let $\phi: G \to H$ be a homomorphism. Prove that $\phi(1_G) = 1_H$, where 1_G and 1_H are the identity elements of G and H, respectively. Additionally, prove that $\phi(g^{-1}) = \phi(g)^{-1}$ for all $g \in G$.
- (2) Let $\phi: G \to H$ be a homomorphism. Prove that ker $\phi := \{k \in G \mid \phi(k) = 1_H\}$ is a subgroup of G, and that it is normal.
- (3) Prove that $A \times B \cong B \times A$.
- (4) Prove that if $H \leq G$, then $xHx^{-1} \cong H$ for any $x \in G$.
- (5) Prove there is no embedding $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}$.
- (6) Prove that if $\varphi: G \to H$ is a homomorphism and $N \triangleleft H$, then $\varphi^{-1}(N)$ is a normal subgroup of G.
- (7) If $H \leq G$ is the only subgroup of G of order |H|, then H must be normal.
- (8) The FHT: If $\varphi \colon G \to H$ is a homomorphism, then $G/\ker \varphi \cong \operatorname{im} \varphi$.
- (9) The Diamond Isomorphism Theorem: If $A, B \triangleleft G$, then $AB \leq G, B \triangleleft AB, (A \cap B) \triangleleft A$, and $AB/B \cong A/(A \cap B)$.
- (10) Show that $\mathbb{Q}^* \cong \mathbb{Q}^+ \times C_2$ and $\mathbb{Q}^*/\langle -1 \rangle \cong \mathbb{Q}^+$, where \mathbb{Q}^* is the nonzero rationals under multiplication, and $\mathbb{Q}^+ \leq \mathbb{Q}^*$ is the subgroup of positive rationals.
- (11) Prove that G is abelian iff its commutator subroup $G' = \{e\}$.
- (12) Prove that G/G' is abelian.

- (13) Show that if G acts on S, then Stab(s) is a subgroup of G, for any $s \in S$.
- (14) Prove that if G is a p-group, then |Z(G)| > 1. (Use the class equation.)

Study guide: Final exam.

Note: This is in addition, not instead, of the Midterm 1 and 2 material.

Definitions to memorize.

- (1) A field F.
- (2) A field automorphism of F.
- (3) The degree [E:F] of a field extension E of F.
- (4) What it means for a number $\alpha \notin \mathbb{Q}$ to be *algebraic*.
- (5) What it means for a field to be *algebraically closed*.
- (6) The *Galois group* of a field extension, and of a polynomial.
- (7) The minimal polynomial of a number $r \notin F$.
- (8) What it means for an extension field E of F to be normal.
- (9) What it means for group G to be *solvable*.
- (10) A ring R.
- (11) A *unit*, and a *zero divisor* of a ring.
- (12) Types of rings: integral domain, division ring, principle ideal domain (PID), unique factorization domain (UFD), Euclidean domain.
- (13) An *ideal* of a ring R (left, right, and two-sided).
- (14) The quotient ring R/I for some two-sided ideal I, and how to multiply elements.
- (15) A homomorphism ϕ from a ring R to a ring S.
- (16) A maximal ideal M of a ring R.
- (17) A prime ideal P of a ring R.

Useful facts and techniques.

- (1) Use Eisenstein's criterion to show that a particular polynomial is irreducible.
- (2) The degree of an extension $\mathbb{Q}(r)$ is the degree of the minimal polynomial of r.
- (3) The Galois group of f(x) acts on its *n* roots, and so $\operatorname{Gal}(f(x)) \leq S_n$. If *f* is irreducible, then this action has only one orbit.
- (4) $|\operatorname{Gal}(f(x))| = [K : \mathbb{Q}]$, where K is the splitting field of f(x).
- (5) Know the statement of the Fundamental Theorem of Galois theory.
- (6) Know the Galois groups of the following field extensions and be able to describe the explicit automorphisms: $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{2},\sqrt{3})$, $\mathbb{Q}(\sqrt[3]{2},\sqrt{3}i)$, $\mathbb{Q}(\sqrt[4]{2},i)$, and $\mathbb{Q}(\zeta_n)$, where ζ_n is an n^{th} root of unity.
- (7) Be able to construct the subfield lattices of the above fields, and demonstrate the Galois correspondence with subgroups of Gal(f(x)).
- (8) Know the Galois groups of the following polynomials: $f(x) = x^2 2$, $f(x) = (x^2 2)(x^2 3)$, $f(x) = x^3 2$, $f(x) = x^4 2$, $f(x) = x^n 1$.
- (9) Summarize in a few sentences how to construct a degree-5 polynomial that is not solvable by radicals.
- (10) Know examples of each of the following types of rings: integral domain, division ring, principle ideal domain (PID), unique factorization domain (UFD), Euclidean domain.
- (11) Know examples of both maximal ideals and prime ideals.
- (12) Learn how to construct a finite field \mathbb{F}_q of order $q = p^k$.
- (13) Know the statements of the fundamental homomorphism theorem and the correspondence theorem for rings and how to apply them.

Proofs to learn.

- (1) Use Galois theory to prove that $\sqrt{2}$ is irrational.
- (2) If an ideal I of R contains a unit, then I = R.
- (3) The FHT for rings: if $\phi: R \to S$ is a ring homomorphism, then ker ϕ is an ideal of R and $R/\ker \phi \cong \operatorname{im} \phi$.
- (4) The following are equivalent: (i) I is a maximal ideal, (ii) R/I is simple, (iii) R/I is a field.
- (5) An ideal P is prime iff R/P is an integral domain.

(6) A ring R is an integral domain iff 0 is a prime ideal.