Lecture 7.7: The Chinese remainder theorem

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Motivating example

Exercise 1

Find all solutions to the system

$$\begin{cases} 2x \equiv 5 \pmod{7} \\ 3x \equiv 4 \pmod{9} \end{cases}$$

Motivating example

Exercise 2

Find all solutions to the system $\begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 0 \pmod{6} \end{cases}$

Number theory version

Chinese remainder theorem

Let $n_1, \ldots, n_k \in \mathbb{Z}^+$ be pairwise co-prime (that is, $gcd(n_i, n_j) = 1$ for $i \neq j$). For any $a_1, \ldots, a_k \in \mathbb{Z}$, the system

 $\begin{cases} x \equiv a_1 \pmod{n_1} \\ \vdots \\ x \equiv a_1 \pmod{n_1} \end{cases}$

has a solution $x \in \mathbb{Z}$. Moreover, all solutions are congruent modulo $N = n_1 n_2 \cdots n_k$.

This can be generalized. To see how, first recall the following operations on ideals:

- 1. Intersection: $I \cap J = \{r \in R \mid r \in I \text{ and } r \in J\}$.
- 2. Product: $IJ = \langle ab \mid a \in I, b \in J \rangle = \{a_1b_1 + \cdots + a_kb_k \mid a_i \in I, b_j \in J\} \subseteq I \cap J.$
- 3. Sum: $I + J = \{a + b \mid a \in I, b \in J\}$.

Example: $R = \mathbb{Z}$, $I = \langle 9 \rangle = 9\mathbb{Z}$, $J = \langle 6 \rangle = 6\mathbb{Z}$.

- 1. Intersection: $\langle 9 \rangle \cap \langle 6 \rangle = \langle 18 \rangle$ (lcm)
- 2. *Product*: $\langle 9 \rangle \langle 6 \rangle = \langle 54 \rangle$ (product)
- 3. Sum: $\langle 9 \rangle + \langle 6 \rangle = \langle 3 \rangle$ (gcd).

Note that gcd(m, n) = 1 iff am + bn = 1 for some $a, b \in \mathbb{Z}$.

Or equivalently, $\langle m \rangle + \langle n \rangle = \mathbb{Z}$.

Definition

Two ideals I, J of R are co-prime if I + J = R.

Chinese remainder theorem (2 ideals)

Let R have 1 and I + J = R. Then for any $r_1, r_2 \in R$, the system

 $\begin{cases} x \equiv r_1 \pmod{I} \\ x \equiv r_2 \pmod{J} \end{cases}$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I \cap J$.

Recall that such a solution $r \in R$ satisfies $r - r_1 \in I$ and $r - r_2 \in J$.

Chinese remainder theorem (2 ideals)

Let R have 1 and I + J = R. Then for any $r_1, r_2 \in R$, the system

$$\begin{cases} x \equiv r_1 \pmod{I} \\ x \equiv r_2 \pmod{J} \end{cases}$$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I \cap J$.

Proof

Write 1 = a + b, with $a \in I$ and $b \in J$, and set $r = r_2a + r_1b$.

Chinese remainder theorem

Let *R* have 1 and I_1, \ldots, J_n be pairwise co-prime ideals. Then for any $r_1, \ldots, r_n \in R$, the system

 $\begin{cases} x \equiv r_1 \pmod{l_1} \\ \vdots \\ x \equiv r_2 \pmod{l_n} \end{cases}$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I_1 \cap \cdots \cap I_n$.

Proof

$$n=1$$
. For $j=2,\ldots,n$, write $1=a_j+b_j$, where $a_j \in I_1$, $b_j \in I_j$. Then

$$1 = (a_2 + b_2)(a_3 + b_3) \cdots (a_n + b_n)$$

= $a_2[(a_3 + b_3) \cdots (a_n + b_n)] + b_2[(a_3 + b_3) \cdots (a_n + b_n)] \in I_1 + \prod_{j=2}^n I_j = R.$

Now apply the CRT for 2 ideals to the system $\begin{cases} x \equiv 1 \pmod{l_1} \\ x \equiv 0 \pmod{\prod_{j \neq 1} l_j} \end{cases}$

Let $s_1 \in R$ be a solution.

Chinese remainder theorem

Let R have 1 and I_1, \ldots, J_n be pairwise co-prime ideals. Then for any $r_1, \ldots, r_n \in R$, the system

 $\begin{cases} x \equiv r_1 \pmod{l_1} \\ \vdots \\ x \equiv r_2 \pmod{l_n} \end{cases}$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I_1 \cap \cdots \cap I_n$.

Proof (cont.) $\underline{n = k}. \text{ For } j = 1, \dots, k, \dots, n, \text{ write } \mathbf{1} = \mathbf{a}_j + \mathbf{b}_j, \text{ where } \mathbf{a}_j \in I_k, \ b_j \in I_j. \text{ Then}$ $\mathbf{1} = (\mathbf{a}_2 + \mathbf{b}_2) \cdots (\mathbf{a}_k + \mathbf{b}_k) \cdots (\mathbf{a}_n + \mathbf{b}_n) \in I_k + \prod_{j \neq k} I_j = R.$ Now apply the CRT for 2 ideals to the system $\begin{cases} x \equiv 1 \pmod{I_k} \\ x \equiv 0 \pmod{\prod_{j \neq 1} I_j} \end{cases}$ Let $s_k \in R$ be a solution.

Chinese remainder theorem

Let *R* have 1 and I_1, \ldots, J_n be pairwise co-prime ideals. Then for any $r_1, \ldots, r_n \in R$, the system

 $\begin{cases} x \equiv r_1 \pmod{l_1} \\ \vdots \\ x \equiv r_2 \pmod{l_n} \end{cases}$

has a solution $r \in R$. Moreover, any two solutions are congruent modulo $I_1 \cap \cdots \cap I_n$.

Proof (cont.)

By construction,
$$s_k \in \pmod{\prod_{j \neq k} l_j}$$
, and so $s_k \in l_j$ for all $j \neq k$.

We have $s_k \equiv 1 \pmod{l_k}$ and $s_k \equiv 1 \pmod{l_j}$ for $j \neq k$.

Set $r = r_1 s_1 + \cdots + r_n s_n$. It is easy to see that this works.

If $s \in R$ is another solution, then $s \equiv r_j \equiv r \pmod{l_j}$, for $j = 1, \ldots, n$, and so

$$s \equiv r \mod \bigcap_{j=1}^n I_j.$$

Applications

When is \mathbb{Z}_n isomorphic to a product? Let $R = \mathbb{Z}$ and $I_j = \langle m_j \rangle$, for j = 1, ..., n with $gcd(m_i, m_j) = 1$ for $i \neq j$. Then $I_1 \cap \cdots \cap I_n = \langle m_1 m_2 \cdots m_n \rangle$, and $\mathbb{Z}_{m_1 m_2 \cdots m_n} \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}$.

Corollary

Factor $n = p_1^{d_1} \cdots p_n^{d_n}$ into a product of distinct primes. Then

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{d_1}} \times \cdots \times \mathbb{Z}_{p_n^{d_n}}.$$

Remark

If R is a Euclidean domain, then the proof of the CRT is *constructive*.

Specifically, we can use the Euclidean algorithm to write

$$c_k m_k + d_k \prod_{j \neq k} m_j = \gcd\left(m_k, \prod_{j \neq k} m_j
ight) = 1, \quad ext{where} \quad I_j = \langle m_j
angle.$$

Then, set $s_k = d_k \prod_{j \neq k} m_j$, and $r = r_1 s_1 + \cdots + r_n s_n$ is the solution.