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What is a ring?

Definition
A ring is an additive (abelian) group R with an additional binary operation
(multiplication), satisfying the distributive law:

x(y +z) =xy + xz and (v+z)x=yx+2x Vx,y,z€R.

Remarks
m There need not be multiplicative inverses.

m Multiplication need not be commutative (it may happen that xy # yx).

A few more terms

If xy = yx for all x,y € R, then R is commutative.

If R has a multiplicative identity 1 = 1z # 0, we say that “R has identity” or
“unity”, or “R is a ring with 1.”

A subring of R is a subset S C R that is also a ring.
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What is a ring?

Examples

1.
2.
3,

Z C Q C R C C are all commutative rings with 1.
Zn is a commutative ring with 1.

For any ring R with 1, the set M,(R) of n X n matrices over R is a ring. It has
identity 1y, (r) = I» iff R has 1.

For any ring R, the set of functions F = {f: R — R} is a ring by defining
(f+g)(r)=1(r)+8&(r),  (fg)(r) =1f(r)eg(r).
The set S = 2Z is a subring of Z but it does not have 1.

S= { {a 0} ta€ ]R} is a subring of R = M>(R). However, note that

0 0
1 0 1 0
1r = |:0 1:| R but lg = |:0 0:| .

If R is a ring and x a variable, then the set
R[x] = {anx" 4+ -+ a1ix+ a0 | ai € R}

is called the polynomial ring over R.

v

M. Macauley (Clemson) Section 7: Ring theory Math 4120, Modern algebra

3/46


mailto:macaule@clemson.edu

Another example: the quaternions

Recall the (unit) quaternion group:

Q= (i k| i*=j2=K =—1, j=k).

Allowing addition makes them into a ring H, called the quaternions, or Hamiltonians:

H={a+bi+¢ +dk|ab,c,dcR}.

The set H is isomorphic to a subring of M4(RR), the real-valued 4 x 4 matrices:

a —b —C —d
b a —d c

H= c d a —b :a,b,C,dER §M4(R)
d —c b a

Formally, we have an embedding ¢: H < M4(R) where
0 -1 0 0

(i) = {é
0

ooo |

M. Macauley (Clemson)

0 _(’1], () =
1 0

0 0 —1 0
[9 8 ] ¢<k>:[
0 -1 0

We say that H is represented by a set of matrices.
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Units and zero divisors
Definition
Let R be a ring with 1. A unit is any x € R that has a multiplicative inverse. Let
U(R) be the set (a multiplicative group) of units of R.

An element x € R is a left zero divisor if xy = 0 for some y # 0. (Right zero divisors
are defined analogously.)

v

Examples
1. Let R = Z. The units are U(R) = {—1,1}. There are no (nonzero) zero divisors.

2. Let R = Zio. Then 7 is a unit (and 771 = 3) because 7 -3 = 1. However, 2 is
not a unit.

3. Let R =Z,. A nonzero k € Z, is a unit if gcd(n, k) = 1, and a zero divisor if
ged(n, k) > 2.

4. The ring R = Mx(R) has zero divisors, such as:

L 336

The groups of units of M(IR) are the invertible matrices.

v

M. Macauley (Clemson) Section 7: Ring theory Math 4120, Modern algebra

5/ 46


mailto:macaule@clemson.edu

Group rings
Let R be a commutative ring (usually, Z, R, or C) and G a finite (multiplicative)
group. We can define the group ring RG as

RG:={aigi+ -+ angn| ai €R, g € G},
where multiplication is defined in the “obvious” way.
For example, let R =7 and G = Dy = (r,f | r* = f* = rfrf = 1), and consider the
elements x = r + r> — 3f and y= —5¢% + rf in ZD4. Their sum is
X4y =r—4r —3f 4 rf,

and their product is

xy = (r+r*> = 3f)(=5r% 4+ rf) = r(=5r% + rf) + r?(=5r% + rf) — 3f(=5r* 4 rf)

= 53 + r2f —5r* + r3f + 156 — 3frf = —5 — 8r> + 16r%f + r3f.
Remarks
m The (real) Hamiltonians H is not the same ring as RQs.

m If g € G has finite order |g| = k > 1, then RG always has zero divisors:
(l-gl+g+--—-+g)=1-g=1-1=0.

m RG contains a subring isomorphic to R, and the group of units U(RG) contains
a subgroup isomorphic to G.

y
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Types of rings

Definition
If all nonzero elements of R have a multiplicative inverse, then R is a division ring.
(Think: “field without commutativity”.)

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors.
(Think: “field without inverses”.)

A field is just a commutative division ring. Moreover:

fields C division rings
fields C integral domains C all rings

Examples
m Rings that are not integral domains: Z, (composite n), 2Z, M,(R), Z x Z, H.

m Integral domains that are not fields (or even division rings): Z, Z[x], R[x], R[[x]]
(formal power series).

m Division ring but not a field: H.
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Cancellation

When doing basic algebra, we often take for granted basic properties such as
cancellation: ax = ay = x = y. However, this need not hold in all rings!

Examples where cancellation fails
m In Zs, note that 2 =2-1=2-4, but 1 # 4.

e, oot [ <[00 <[ 1 3

However, everything works fine as long as there aren't any (nonzero) zero divisors.

Proposition

Let R be an integral domain and a # 0. If ax = ay for some x,y € R, then x = y.

Proof
If ax = ay, then ax — ay = a(x — y) = 0.

Since a # 0 and R has no (nonzero) zero divisors, then x — y = 0. O

v
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Finite integral domains

Lemma (HW)
If R is an integral domain and 0 # a € R and k € N, then a* # 0. |

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and 0 # a € R. It suffices to show that a has a
multiplicative inverse.

Consider the infinite sequence a, a?,a%, a*, ..., which must repeat.
Find i > j with a’ = &/, which means that
0=a —d =d(a"~7 -1).

Since R is an integral domain and & # 0, then &~/ = 1.

Thus, a-a" 71 = 1. O
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Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a
normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition
A subring | C R is a left ideal if
rx €1 forall r € R and x € /.

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write | < R.

Examples
m nZ <Z.
m If R = Mx(R), then | = { {i 8} HENCNS R} is a left, but not a right ideal of R.

m The set Sym,(R) of symmetric n x n matrices is a subring of M,(R), but not an
ideal.
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Ideals
Remark
If an ideal | of R contains 1, then | = R.

Proof
Suppose 1 € I, and take an arbitrary r € R.

Then rl € I, and so r1 = r € I. Therefore, | = R. O

It is not hard to modify the above result to show that if / contains any unit, then
I =R. (HW)

Let's compare the concept of a normal subgroup to that of an ideal:
m normal subgroups are characterized by being invariant under conjugation:
H < G is normal iff ghg™' € Hforallg e G, he H.

m (left) ideals of rings are characterized by being invariant under (left)
multiplication:

I C Ris a (left) ideal iff ric | forall r e R, i €.
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Ideals generated by sets
Definition
The left ideal generated by a set X C R is defined as:

(X):=() {/: lisaleftideal s.t. X CICR}.

This is the smallest left ideal containing X.

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup (X) generated by a subset X C G:

m “Bottom up’: As the set of all finite products of elements in X;

m “Top down”: As the intersection of all subgroups containing X.

Proposition (HW)

Let R be a ring with unity. The (left, right, two-sided) ideal generated by X C R is:
m Left: {rnxi+---+rmxn:neN, € R, x; € X},
m Right: {xan+ - +x.m:neN, i € R, x; € X},
m Two-sided: {rixisi + -+ roxas, i n €N, rj,si € R, x; € X}.
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Ideals and quotients
Since an ideal / of R is an additive subgroup (and hence normal), then:

m R/l ={x+1|x € R} is the set of cosets of / in R;
m R/l is a quotient group; with the binary operation (addition) defined as
x+H+Wy+H=x+y+I.

It turns out that if / is also a two-sided ideal, then we can make R// into a ring.

Proposition

If | C R is a (two-sided) ideal, then R/l is a ring (called a quotient ring), where
multiplication is defined by

(x+NDy+1)=xy+1.

Proof

We need to show this is well-defined. Suppose x +/ =r+/and y +/ =s+ 1. This
means that x —r €/ and y —s € /.

It suffices to show that xy + | = rs + I, or equivalently, xy — rs € I:

xy—rs=xy—ry+ry—rs=(x—r)y+r(y—s)el.

v
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Finite fields

We've already seen that Z, is a field if p is prime, and that finite integral domains
are fields. But what do these “other” finite fields look like?

Let R = Z»[x] be the polynomial ring over the field Z,. (Note: we can ignore all
negative signs.)

The polynomial f(x) = x> + x + 1 is irreducible over Z, because it does not have a
root. (Note that f(0) = (1) =1#0.)

Consider the ideal | = (x*> + x + 1), the set of multiples of x* 4 x + 1.

In the quotient ring R/I, we have the relation X4+ x+1= 0, or equivalently,

xX=-x—-1=x+1.

The quotient has only 4 elements:
0+1, 1+1, x+1, (x+1)+1.

As with the quotient group (or ring) Z/nZ, we usually drop the “I", and just write
R/l = Zso[x]/(x* + x +1) = {0, 1, x, x+1}.

It is easy to check that this is a field!
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Finite fields
Here is a Cayley diagram, and the operation tables for R/l = Z[x]/(x* 4+ x 4+ 1):

+ [ [
: 2] < 1 [l
A}
1
1
1
: 2]

There exists a finite field I, of order g, which is unique up to isomorphism, iff g = p
for some prime p. If n > 1, then this field is isomorphic to the quotient ring

Zp[x]/(f),

where f is any irreducible polynomial of degree n.

Theorem

n

Much of the error correcting techniques in coding theory are built using mathematics
over Fps = Fas6. This is what allows your CD to play despite scratches.
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Motivation (spoilers!)

Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory
m The quotient group G/N exists iff N is a normal subgroup.
m A homomorphism is a structure-preserving map: f(x * y) = f(x) * f(y).
m The kernel of a homomorphism is a normal subgroup: Ker¢ < G.

m For every normal subgroup N < G, there is a natural quotient homomorphism
¢: G— G/N, ¢(g)=gN.

m There are four standard isomorphism theorems for groups.

Ring theory
m The quotient ring R/ exists iff | is a two-sided ideal.
m A homomorphism is a structure-preserving map: f(x + y) = f(x) + f(y) and
) = F()F(y)-
m The kernel of a homomorphism is a two-sided ideal: Ker¢ < R.

m For every two-sided ideal | < R, there is a natural quotient homomorphism
¢: R—= R/, ¢(r)=r+1.
m There are four standard isomorphism theorems for rings.

v
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Ring homomorphisms
Definition

A ring homomorphism is a function f: R — S satisfying
f(x+y)="~f(x)+f(y) and f(xy) = f(x)f(y) forall x,y € R.

A ring isomorphism is a homomorphism that is bijective.

The kernel f: R — S is the set Kerf := {x € R: f(x) = 0}.

Examples

1. The function ¢: Z — Z, that sends k — k (mod n) is a ring homomorphism
with Ker(¢) = nZ.

2. For a fixed real number o € R, the “evaluation function”
¢: R[x] — R, ¢: p(x) — p(a)

is a homomorphism. The kernel consists of all polynomials that have « as a root.

3. The following is a homomorphism, for the ideal /| = (x* + x + 1) in Z[x]:

¢ ZLo[x] — Z2[x]/1, f(x) — f(x)+1.

4
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The isomorphism theorems for rings

Fundamental homomorphism theorem

If : R — S is a ring homomorphism, then Ker ¢ is an ideal and Im(¢) = R/ Ker(gf)).J

R ¢ SMimg< S

m

(I = Ker ¢) any homomorphism 4 -
AN Al
N 7
N 7
~ 9 g,
quotient +” remaining isomorphism

process L7 (“relabeling”)

R/ Ker ¢

quotient
ring

Proof (HW)

The statement holds for the underlying additive group R. Thus, it remains to show
that Ker ¢ is a (two-sided) ideal, and the following map is a ring homomorphism:

g: R/l — Imao, gx+1)=¢(x).
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The second isomorphism theorem for rings

Suppose S is a subring and / an ideal of R. Then

(i) Thesum S+ /1 ={s+i|s€S, i€l}isasubring of R
and the intersection SN/ is an ideal of S.

+—=

A

(ii) The following quotient rings are isomorphic: s

(S+1/1=5/5n1).

o’ N

D

Proof (sketch)

S + I is an additive subgroup, and it's closed under multiplication because

si,2€S, h,hel — (51+i1)(52+i2)= 5150 +Ss1h+ hs + i €S+ 1.
NN
€S el

Showing SN/ is an ideal of S is straightforward (homework exercise).

We already know that (S+/)// = S/(S N 1) as additive groups.

One explicit isomorphism is ¢: s+ (SN /) — s+ I. It is easy to check that ¢: 1 +— 1

and ¢ preserves products.

O

y
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The third isomorphism theorem for rings

Freshman theorem
Suppose R is a ring with ideals J C /. Then //J is an ideal of R/J and

(R/D)/(1)) = R/I.

_J _ _J

R 1 J RIJ 1)) B/]) R
(/) 1

B
sala
gl

(Thanks to Zach Teitler of Boise State for the concept and graphic!)
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The fourth isomorphism theorem for rings

Correspondence theorem

Let / be an ideal of R. There is a bijective correspondence between subrings (&
ideals) of R/l and subrings (& ideals) of R that contain /. In particular, every ideal
of R/l has the form J/I, for some ideal J satisfying | C J C R.

D &) (B @ G CEId
P“ }“
oé’e ¢ @ D G G
D,
subrings & ideals that contain / subrings & ideals of R/I
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Maximal ideals
Definition
An ideal | of R is maximal if | # R and if | C J C R holds for some ideal J, then
J=1orJ=R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples
1. If n# 0, then the ideal M = (n) of R = Z is maximal if and only if n is prime.

2. Let R = Q[x] be the set of all polynomials over Q. The ideal M = (x)
consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring Q[x]/(x) have the form f(x) + M = ap + M.

3. Let R = Z»[x], the polynomials over Z,. The ideal M = (x* 4+ x + 1) is
maximal, and R/M = Fy, the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.
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Maximal ideals
Theorem
Let R be a commutative ring with 1. The following are equivalent for an ideal / C R.
(i) I is a maximal ideal;
(i) R/I is simple;
(iii) R/I'is a field.

Proof

The equivalence (i)<(ii) is immediate from the Correspondence Theorem.
For (ii)<(iii), we'll show that an arbitrary ring R is simple iff R is a field.

“=": Assume R is simple. Then (a) = R for any nonzero a € R.

Thus, 1 € (a), so 1 = ba for some b € R, so a € U(R) and R is a field. v/
“<": Let I C R be a nonzero ideal of a field R. Take any nonzero a € /.

Then a~tael, and so 1 € I, which means | = R. v/ O

v
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Prime ideals
Definition

Let R be a commutative ring. An ideal P C R is prime if ab € P implies either a € P
orbe P.

Note that p € N is a prime number iff p = ab implies either a = p or b = p.

Examples
1. The ideal (n) of Z is a prime ideal iff n is a prime number (possibly n = 0).

2. In the polynomial ring Z[x], the ideal | = (2, x) is a prime ideal. It consists of all
polynomials whose constant coefficient is even.

v

Theorem

An ideal P C R is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is
immediate:

Corollary J

In a commutative ring, every maximal ideal is prime.
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Divisibility and factorization

A ring is in some sense, a generalization of the familiar number systems like Z, R,
and C, where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:
m multiplication is commutative,

m there are no (nonzero) zero divisors.

Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, R is assumed to be an
integral domain, and we will define R* := R\ {0}.

The integers have several basic properties that we usually take for granted:

m every nonzero number can be factored uniquely into primes;

m any two numbers have a unique greatest common divisor and least common
multiple;

m there is a Euclidean algorithm, which can find the gcd of two numbers.
Surprisingly, these need not always hold in integrals domains! We would like to

understand this better.
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Divisibility
Definition
If a,b € R, say that a divides b, or b is a multiple of a if b = ac for some c € R. We

write a | b.

If a| band b| a, then a and b are associates, written a ~ b.

Examples
® In Z: n and —n are associates.
m In R[x]: f(x) and c - f(x) are associates for any ¢ # 0.
m The only associate of 0 is itself.

The associates of 1 are the units of R.

Proposition (HW)

Two elements a, b € R are associates if and only if a = bu for some unit u € U(R).

y

This defines an equivalence relation on R, and partitions R into equivalence classes.
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Irreducibles and primes
Note that units divide everything: if b € R and u € U(R), then u | b.

Definition
If b € R is not a unit, and the only divisors of b are units and associates of b, then b

is irreducible.

An element p € R is prime if p is not a unit, and p | ab implies p | a or p | b.

Proposition
If 0 £ p € R is prime, then p is irreducible.

Proof
Suppose p is prime but not irreducible. Then p = ab with a, b ¢ U(R).

Then (wlog) p | a, so a = pc for some ¢ € R. Now,
p = ab = (pc)b = p(cb).

This means that cb =1, and thus b € U(R), a contradiction. O

v
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Irreducibles and primes
Caveat: Irreducible % prime
Consider the ring R_s := {a+ b\/—5:a,b € Z}.
3|2+ V=5)(2—v=5)=9=3-3,
but 312+ /=5 and 342 — /5.

Thus, 3 is irreducible in R_s but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique
factorization.

Things can get really bad: not even the lengths of factorizations into irreducibles
need be the samel

For example, consider the ring R = Z[x?, x*]. Then

The element x* € R is not prime because x* | x> - x® yet x* { x> in R (note: x € R).
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Principal ideal domains
Fortunately, there is a type of ring where such “bad things” don’t happen.

Definition
An ideal | generated by a single element a € R is called a principal ideal. We denote

this by I = (a).

If every ideal of R is principal, then R is a principal ideal domain (PID).

Examples

The following are all PIDs (stated without proof):
m The ring of integers, Z.
m Any field F.

m The polynomial ring F[x] over a field.

As we will see shortly, PIDs are “nice” rings. Here are some properties they enjoy:
m pairs of elements have a “greatest common divisor” & *least common multiple”;
m irreducible = prime;

m Every element factors uniquely into primes.
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Greatest common divisors & least common multiples

Proposition

If I CZis an ideal, and a € [ is its smallest positive element, then | = (a).

Proof
Pick any positive b € I. Write b=aq+r, for g,r € Zand 0 < r < a.

Then r=b—aq €/, so r =0. Therefore, b= ga € (a).

Definition
A common divisor of a, b € R is an element d € R such that d | a and d | b.

Moreover, d is a greatest common divisor (GCD) if ¢ | d for all other common
divisors ¢ of a and b.

A common multiple of a, b € R is an element m € R such that a | m and b | m.

Moreover, m is a least common multiple (LCM) if m | n for all other common
multiples n of a and b.
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Nice properties of PIDs

Proposition
If Ris a PID, then any a, b € R* have a GCD, d = gcd(a, b).

It is unique up to associates, and can be written as d = xa + yb for some x,y € R.

4

Proof

Existence. The ideal generated by a and b is
I =(a,b)={uva+vb:u,veR}.
Since R is a PID, we can write | = (d) for some d € /, and so d = xa + yb.

Since a, b € (d), both d | a and d | b hold.

If ¢ is a divisor of a & b, then ¢ | xa+ yb = d, so d is a GCD for a and b. v/

Uniqueness. If d’ is another GCD, then d | d" and d' | d,so d ~ d'. vV O
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Nice properties of PIDs

Corollary

If R is a PID, then every irreducible element is prime.

Proof
Let p € R be irreducible and suppose p | ab for some a, b € R.
If p1a, then ged(p, a) = 1, so we may write 1 = xa + yp for some x,y € R. Thus
b = (xa+ yp)b = x(ab) + (yb)p.
Since p | x(ab) and p | (yb)p, then p | x(ab) + (yb)p = b. O

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)
If Ris a PID, then any a, b € R* have an LCM, m = lcm(a, b).

It is unique up to associates, and can be characterized as a generator of the ideal
I :=(a) N (b).
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Unique factorization domains
Definition
An integral domain is a unique factorization domain (UFD) if:

(i) Every nonzero element is a product of irreducible elements;

(ii) Every irreducible element is prime.

Examples

1. Z is a UFD: Every integer n € Z can be uniquely factored as a product of
irreducibles (primes):

_ 0 di
n=p; Py Py -

This is the fundamental theorem of arithmetic.

2. The ring Z[x] is a UFD, because every polynomial can be factored into
irreducibles. But it is not a PID because the following ideal is not principal:

(2,x) = {f(x) : the constant term is even}.

3. The ring R_s is not a UFD because 9 =3 -3 = (24 +/—5)(2 — v/-5).

4. We've shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.
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Unique factorization domains

Theorem
If Ris a PID, then R is a UFD.

Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A
ring is Noetherian if every ascending chain of ideals

hChChC--

stabilizes, meaning that lx = k41 = lk42 = - -+ holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define
X ={a€ R"\ U(R) : acan't be written as a product of irreducibles}.

If X # 0, then pick a1 € X. Factor this as a; = a»b, where a, € X and b &€ U(R).
Then (a1) € (a2) € R, and repeat this process. We get an ascending chain

(a1) & (a2) S (a3) & -

that does not stabilize. This is impossible in a PID, so X = {. O

y
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Summary of ring types

Zp fields C
Zo[x]/(x*+x+1) Q
- A Fase

R(v=m)  Q(Vm)
Q(V2,¢)
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The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the
Elements, in which he described what is now known as
the Euclidean algorithm:

Proposition VII.2 (Euclid's Elements) J

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:
m If a| b, then ged(a, b) = a; "EVCLIDIS -
m If a = bqg+ r, then ged(a, b) = ged(b, r). AR e

& X V1. De Solidorum Rega-
cuiilbotiniag radiber

This is best seen by an example: Let a = 654 and b = 360.

654 =360-1-+294  gcd(654,360) = gcd(360,294)
360 = 294 - 1 + 66 gcd(360,294) = ged(294, 66)

294 =66 - 4 + 30 ged(294,66) = ged(66, 30) i T
66 =30-2+6 gcd(66, 30) = ged(30, 6) e
30=6-5 gcd(30,6) = 6. -

We conclude that gcd(654,360) = 6.
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Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm
still works.

Definition
An integral domain R is Euclidean if it has a degree function d: R* — Z satisfying:
(i) non-negativity: d(r) >0 Vr € R".
(i) monotonicity: d(a) < d(ab) for all a,b € R*.
(iii) division-with-remainder property: For all a,b € R, b # 0, there are q,r € R
such that

a=bqg+r with r=0 or d(r)<d(b).

Note that Property (ii) could be restated to say: If a| b, then d(a) < d(b);

Examples
m R =Z is Euclidean. Define d(r) = |r|.
m R = F[x] is Euclidean if F is a field. Define d(f(x)) = deg f(x).
m The Gaussian integers R_; = Z[v/—1] = {a+ bi : a,b € Z} is Euclidean with
degree function d(a + bi) = a* + b*.
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Euclidean domains

Proposition
If R is Euclidean, then U(R) = {x € R* : d(x) = d(1)}.

Proof

C": First, we'll show that associates have the same degree. Take a ~ b in R™:

alb = d(a) <d(b)

bla = d(b)<d(a) d(a) = d(b).

If u€ U(R), then u~ 1, and so d(v) = d(1). v

“D": Suppose x € R* and d(x) = d(1).

Then 1 = gx + r for some g € R with either r =0 or d(r) < d(x) = d(1).
If r #£0, then d(1) < d(r) since 1 | r.

Thus, r =0, and so gx = 1, hence x € U(R). v
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Euclidean domains
Proposition
If R is Euclidean, then R is a PID.

Proof
Let / # 0 be an ideal and pick some b € | with d(b) minimal.

Pick a € I, and write a = bg + r with either r =0, or d(r) < d(b).
This latter case is impossible: r = a — bg € I, and by minimality, d(b) < d(r).

Therefore, r = 0, which means a = bq € (b). Since a was arbitrary, | = (b). O

Exercises.
(i) The ideal I = (3,2 4 +/—5) is not principal in R_s.
(i) If R is an integral domain, then | = (x,y) is not principal in R[x, y].

Corollary
The rings R_s5 (not a PID or UFD) and R[x, y] (not a PID) are not Euclidean. J
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Algebraic integers
The algebraic integers are the roots of monic polynomials in Z[x]. This is a subring
of the algebraic numbers (roots of all polynomials in Z[x]).

Assume m € Z is square-free with m # 0, 1. Recall the quadratic field
Q(vm)={p+qvm|p,qeQ}.
Definition

The ring R is the set of algebraic integers in Q(y/m), i.e., the subring consisting of
those numbers that are roots of monic quadratic polynomials x* + cx + d € Z[x].

Facts

® R, is an integral domain with 1.

m Since m is square-free, m # 0 (mod 4). For the other three cases:
Zlyml={a+bym:abeZ} m=2or3 (mod 4)

Rm =

Z[%) ={a+b(*Y™):a,b€Z} m=1 (mod 4)

m R_; is the Gaussian integers, which is a PID. (easy)

m R_i9 is a PID. (hard)

v
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Algebraic integers

Definition
For x = r + sv/m € Q(y/m), define the norm of x to be
N(x) = (r + sv/m)(r — sy/m) = r* — ms*.

Rm is norm-Euclidean if it is a Euclidean domain with d(x) = |N(x)|.

Note that the norm is multiplicative: N(xy) = N(x)N(y).

Exercises
Assume m € Z is square-free, with m # 0, 1.
m u € U(Rn) iff [N(u)| = 1.
m If m > 2, then U(Ry) is infinite.
m U(R_1) = {£1,+i} and U(R_3) = { £ 1, £33}
m If m=—2or m< =3, then U(Rn) = {£1}.
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Euclidean domains and algebraic integers
Theorem
R, is norm-Euclidean iff

me {—11,-7,-3,-2,—1,2,3,5,6,7,11,13,17, 19, 21,29, 33,37, 41,57, 73} .

Theorem (D.A. Clark, 1994)

The ring Reo is a Euclidean domain that is not norm-Euclidean.

Let @ = (14 /69)/2 and ¢ > 25 be an integer. Then the following degree function
works for Reg, defined on the prime elements:

4(p) = {|N(p)| if p# 10 + 3o

c if p=10+ 3«
Theorem
If m<O0and m¢g{-11,—7,—3,—2,—1}, then Ry, is not Euclidean. J
Open problem
Classify which Rp,'s are PIDs, and which are Euclidean. J
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PIDs that are not Euclidean

Theorem
If m <0, then Ry, is a PID iff

me {-1,-2,-3,—7,—11,—19, —43, —67, —163} .

Euclidean

Recall that R, is norm-Euclidean iff

me {—11,-7,-3,-2,-1,2,3,5,6,7,11,13,17, 19, 21,29, 33,37, 41,57, 73} .

Corollary
If m <0, then Ry, is a PID that is not Euclidean iff m € {—19, —43, —67, —163}. J
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Algebraic integers

— e—n" i, el

Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the
leading term: red = 1 (algebraic integer), green = 2, blue = 3, . Large dots mean
fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).
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Algebraic integers

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic
polynomial of degree < 7 with coefficients from {0, £1,+2,4+3, +4, £5}. From Wikipedia.
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Summary of ring types

fields ¢

AQIFPn
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