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What is a ring?

Definition

A ring is an additive (abelian) group R with an additional binary operation
(multiplication), satisfying the distributive law:

x(y + z) = xy + xz and (y + z)x = yx + zx ∀x , y , z ∈ R .

Remarks

There need not be multiplicative inverses.

Multiplication need not be commutative (it may happen that xy 6= yx).

A few more terms

If xy = yx for all x , y ∈ R, then R is commutative.

If R has a multiplicative identity 1 = 1R 6= 0, we say that “R has identity” or
“unity”, or “R is a ring with 1.”

A subring of R is a subset S ⊆ R that is also a ring.
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What is a ring?

Examples

1. Z ⊂ Q ⊂ R ⊂ C are all commutative rings with 1.

2. Zn is a commutative ring with 1.

3. For any ring R with 1, the set Mn(R) of n × n matrices over R is a ring. It has
identity 1Mn(R) = In iff R has 1.

4. For any ring R, the set of functions F = {f : R → R} is a ring by defining

(f + g)(r) = f (r) + g(r), (fg)(r) = f (r)g(r) .

5. The set S = 2Z is a subring of Z but it does not have 1.

6. S =

{[
a 0
0 0

]
: a ∈ R

}
is a subring of R = M2(R). However, note that

1R =

[
1 0
0 1

]
, but 1S =

[
1 0
0 0

]
.

7. If R is a ring and x a variable, then the set

R[x ] = {anxn + · · ·+ a1x + a0 | ai ∈ R}

is called the polynomial ring over R.
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Another example: the quaternions

Recall the (unit) quaternion group:

Q8 = 〈i , j , k | i2 = j2 = k2 = −1, ij = k〉.

1

j
k

−i

−1

−j

−k
i

Allowing addition makes them into a ring H, called the quaternions, or Hamiltonians:

H = {a + bi + cj + dk | a, b, c, d ∈ R} .

The set H is isomorphic to a subring of M4(R), the real-valued 4× 4 matrices:

H =


a −b −c −d
b a −d c
c d a −b
d −c b a

 : a, b, c, d ∈ R

 ⊆ M4(R) .

Formally, we have an embedding φ : H ↪→ M4(R) where

φ(i) =

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, φ(j) =

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, φ(k) =

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

We say that H is represented by a set of matrices.
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Units and zero divisors

Definition

Let R be a ring with 1. A unit is any x ∈ R that has a multiplicative inverse. Let
U(R) be the set (a multiplicative group) of units of R.

An element x ∈ R is a left zero divisor if xy = 0 for some y 6= 0. (Right zero divisors
are defined analogously.)

Examples

1. Let R = Z. The units are U(R) = {−1, 1}. There are no (nonzero) zero divisors.

2. Let R = Z10. Then 7 is a unit (and 7−1 = 3) because 7 · 3 = 1. However, 2 is
not a unit.

3. Let R = Zn. A nonzero k ∈ Zn is a unit if gcd(n, k) = 1, and a zero divisor if
gcd(n, k) ≥ 2.

4. The ring R = M2(R) has zero divisors, such as:[
1 −2
−2 4

] [
6 2
3 1

]
=

[
0 0
0 0

]
The groups of units of M2(R) are the invertible matrices.
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Group rings
Let R be a commutative ring (usually, Z, R, or C) and G a finite (multiplicative)
group. We can define the group ring RG as

RG := {a1g1 + · · ·+ angn | ai ∈ R, gi ∈ G} ,

where multiplication is defined in the “obvious” way.

For example, let R = Z and G = D4 = 〈r , f | r 4 = f 2 = rfrf = 1〉, and consider the
elements x = r + r 2 − 3f and y = −5r 2 + rf in ZD4. Their sum is

x + y = r − 4r 2 − 3f + rf ,

and their product is

xy = (r + r 2 − 3f )(−5r 2 + rf ) = r(−5r 2 + rf ) + r 2(−5r 2 + rf )− 3f (−5r 2 + rf )

= −5r 3 + r 2f − 5r 4 + r 3f + 15fr 2 − 3frf = −5− 8r 3 + 16r 2f + r 3f .

Remarks

The (real) Hamiltonians H is not the same ring as RQ8.

If g ∈ G has finite order |g | = k > 1, then RG always has zero divisors:

(1− g)(1 + g + · · ·+ g k−1) = 1− g k = 1− 1 = 0.

RG contains a subring isomorphic to R, and the group of units U(RG) contains
a subgroup isomorphic to G .
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Types of rings

Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring.
(Think: “field without commutativity”.)

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors.
(Think: “field without inverses”.)

A field is just a commutative division ring. Moreover:

fields ( division rings

fields ( integral domains ( all rings

Examples

Rings that are not integral domains: Zn (composite n), 2Z, Mn(R), Z× Z, H.

Integral domains that are not fields (or even division rings): Z, Z[x ], R[x ], R[[x ]]
(formal power series).

Division ring but not a field: H.
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Cancellation

When doing basic algebra, we often take for granted basic properties such as
cancellation: ax = ay =⇒ x = y . However, this need not hold in all rings!

Examples where cancellation fails

In Z6, note that 2 = 2 · 1 = 2 · 4, but 1 6= 4.

In M2(R), note that

[
1 0
0 0

]
=

[
0 1
0 0

] [
4 1
1 0

]
=

[
0 1
0 0

] [
1 2
1 0

]
.

However, everything works fine as long as there aren’t any (nonzero) zero divisors.

Proposition

Let R be an integral domain and a 6= 0. If ax = ay for some x , y ∈ R, then x = y .

Proof

If ax = ay , then ax − ay = a(x − y) = 0.

Since a 6= 0 and R has no (nonzero) zero divisors, then x − y = 0. �
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Finite integral domains

Lemma (HW)

If R is an integral domain and 0 6= a ∈ R and k ∈ N, then ak 6= 0. �

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and 0 6= a ∈ R. It suffices to show that a has a
multiplicative inverse.

Consider the infinite sequence a, a2, a3, a4, . . . , which must repeat.

Find i > j with ai = aj , which means that

0 = ai − aj = aj(ai−j − 1).

Since R is an integral domain and aj 6= 0, then ai−j = 1.

Thus, a · ai−j−1 = 1. �
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Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a
normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition

A subring I ⊆ R is a left ideal if

rx ∈ I for all r ∈ R and x ∈ I .

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write I E R.

Examples

nZE Z.

If R = M2(R), then I =

{[
a 0
c 0

]
: a, c ∈ R

}
is a left, but not a right ideal of R.

The set Symn(R) of symmetric n× n matrices is a subring of Mn(R), but not an
ideal.
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Ideals

Remark

If an ideal I of R contains 1, then I = R.

Proof

Suppose 1 ∈ I , and take an arbitrary r ∈ R.

Then r1 ∈ I , and so r1 = r ∈ I . Therefore, I = R. �

It is not hard to modify the above result to show that if I contains any unit, then
I = R. (HW)

Let’s compare the concept of a normal subgroup to that of an ideal:

normal subgroups are characterized by being invariant under conjugation:

H ≤ G is normal iff ghg−1 ∈ H for all g ∈ G , h ∈ H.

(left) ideals of rings are characterized by being invariant under (left)
multiplication:

I ⊆ R is a (left) ideal iff ri ∈ I for all r ∈ R, i ∈ I .
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Ideals generated by sets

Definition

The left ideal generated by a set X ⊂ R is defined as:

(X ) :=
⋂ {

I : I is a left ideal s.t. X ⊆ I ⊆ R
}
.

This is the smallest left ideal containing X .

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup 〈X 〉 generated by a subset X ⊆ G :

“Bottom up”: As the set of all finite products of elements in X ;

“Top down”: As the intersection of all subgroups containing X .

Proposition (HW)

Let R be a ring with unity. The (left, right, two-sided) ideal generated by X ⊆ R is:

Left: {r1x1 + · · ·+ rnxn : n ∈ N, ri ∈ R, xi ∈ X},
Right: {x1r1 + · · ·+ xnrn : n ∈ N, ri ∈ R, xi ∈ X},
Two-sided: {r1x1s1 + · · ·+ rnxnsn : n ∈ N, ri , si ∈ R, xi ∈ X}.
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Ideals and quotients
Since an ideal I of R is an additive subgroup (and hence normal), then:

R/I = {x + I | x ∈ R} is the set of cosets of I in R;

R/I is a quotient group; with the binary operation (addition) defined as

(x + I ) + (y + I ) := x + y + I .

It turns out that if I is also a two-sided ideal, then we can make R/I into a ring.

Proposition

If I ⊆ R is a (two-sided) ideal, then R/I is a ring (called a quotient ring), where
multiplication is defined by

(x + I )(y + I ) := xy + I .

Proof

We need to show this is well-defined. Suppose x + I = r + I and y + I = s + I . This
means that x − r ∈ I and y − s ∈ I .

It suffices to show that xy + I = rs + I , or equivalently, xy − rs ∈ I :

xy − rs = xy − ry + ry − rs = (x − r)y + r(y − s) ∈ I .
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Finite fields

We’ve already seen that Zp is a field if p is prime, and that finite integral domains
are fields. But what do these “other” finite fields look like?

Let R = Z2[x ] be the polynomial ring over the field Z2. (Note: we can ignore all
negative signs.)

The polynomial f (x) = x2 + x + 1 is irreducible over Z2 because it does not have a
root. (Note that f (0) = f (1) = 1 6= 0.)

Consider the ideal I = (x2 + x + 1), the set of multiples of x2 + x + 1.

In the quotient ring R/I , we have the relation x2 + x + 1 = 0, or equivalently,
x2 = −x − 1 = x + 1.

The quotient has only 4 elements:

0 + I , 1 + I , x + I , (x + 1) + I .

As with the quotient group (or ring) Z/nZ, we usually drop the “I”, and just write

R/I = Z2[x ]/(x2 + x + 1) ∼= {0, 1, x , x + 1} .

It is easy to check that this is a field!
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Finite fields

Here is a Cayley diagram, and the operation tables for R/I = Z2[x ]/(x2 + x + 1):

0 1

x x+1

+

0

1

x

x+1

0 1 x x+1

0

1

x

x+1

1

0

x+1

x

x

x+1

0

1

x+1

x

1

0

×
1

x

x+1

1 x x+1

1

x

x+1

x

x+1

1

x+1

1

x

Theorem

There exists a finite field Fq of order q, which is unique up to isomorphism, iff q = pn

for some prime p. If n > 1, then this field is isomorphic to the quotient ring

Zp[x ]/(f ) ,

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics
over F28 = F256. This is what allows your CD to play despite scratches.
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Motivation (spoilers!)
Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory

The quotient group G/N exists iff N is a normal subgroup.

A homomorphism is a structure-preserving map: f (x ∗ y) = f (x) ∗ f (y).

The kernel of a homomorphism is a normal subgroup: Ker φE G .

For every normal subgroup N E G , there is a natural quotient homomorphism
φ : G → G/N, φ(g) = gN.

There are four standard isomorphism theorems for groups.

Ring theory

The quotient ring R/I exists iff I is a two-sided ideal.

A homomorphism is a structure-preserving map: f (x + y) = f (x) + f (y) and
f (xy) = f (x)f (y).

The kernel of a homomorphism is a two-sided ideal: Ker φE R.

For every two-sided ideal I E R, there is a natural quotient homomorphism
φ : R → R/I , φ(r) = r + I .

There are four standard isomorphism theorems for rings.
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Ring homomorphisms

Definition

A ring homomorphism is a function f : R → S satisfying

f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y) for all x , y ∈ R.

A ring isomorphism is a homomorphism that is bijective.

The kernel f : R → S is the set Ker f := {x ∈ R : f (x) = 0}.

Examples

1. The function φ : Z→ Zn that sends k 7→ k (mod n) is a ring homomorphism
with Ker(φ) = nZ.

2. For a fixed real number α ∈ R, the “evaluation function”

φ : R[x ] −→ R , φ : p(x) 7−→ p(α)

is a homomorphism. The kernel consists of all polynomials that have α as a root.

3. The following is a homomorphism, for the ideal I = (x2 + x + 1) in Z2[x ]:

φ : Z2[x ] −→ Z2[x ]/I , f (x) 7−→ f (x) + I .
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The isomorphism theorems for rings

Fundamental homomorphism theorem

If φ : R → S is a ring homomorphism, then Ker φ is an ideal and Im(φ) ∼= R/Ker(φ).

R

(I = Ker φ)

φ

any homomorphism

R
/

Ker φ

quotient
ring

Imφ ≤ S

q
quotient
process

g
remaining isomorphism

(“relabeling”)

Proof (HW)

The statement holds for the underlying additive group R. Thus, it remains to show
that Ker φ is a (two-sided) ideal, and the following map is a ring homomorphism:

g : R/I −→ Imφ , g(x + I ) = φ(x) .
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The second isomorphism theorem for rings

Suppose S is a subring and I an ideal of R. Then

(i) The sum S + I = {s + i | s ∈ S , i ∈ I} is a subring of R
and the intersection S ∩ I is an ideal of S .

(ii) The following quotient rings are isomorphic:

(S + I )/I ∼= S/(S ∩ I ) .

R

S + I

S I

S ∩ I

Proof (sketch)

S + I is an additive subgroup, and it’s closed under multiplication because

s1, s2 ∈ S , i1, i2 ∈ I =⇒ (s1 + i1)(s2 + i2) = s1s2︸︷︷︸
∈S

+ s1i2 + i1s2 + i1i2︸ ︷︷ ︸
∈I

∈ S + I .

Showing S ∩ I is an ideal of S is straightforward (homework exercise).

We already know that (S + I )/I ∼= S/(S ∩ I ) as additive groups.

One explicit isomorphism is φ : s + (S ∩ I ) 7→ s + I . It is easy to check that φ : 1 7→ 1
and φ preserves products. �
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The third isomorphism theorem for rings

Freshman theorem

Suppose R is a ring with ideals J ⊆ I . Then I/J is an ideal of R/J and

(R/J)/(I/J) ∼= R/I .

(Thanks to Zach Teitler of Boise State for the concept and graphic!)

M. Macauley (Clemson) Section 7: Ring theory Math 4120, Modern algebra 20 / 46

mailto:macaule@clemson.edu


The fourth isomorphism theorem for rings

Correspondence theorem

Let I be an ideal of R. There is a bijective correspondence between subrings (&
ideals) of R/I and subrings (& ideals) of R that contain I . In particular, every ideal
of R/I has the form J/I , for some ideal J satisfying I ⊆ J ⊆ R.

R

I1 S1 I3

I2 S2 S3 I4

I

subrings & ideals that contain I

R/I

I1/I S1/I I3/I

I2/I S2/I S3/I I4/I

0

subrings & ideals of R/I
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Maximal ideals

Definition

An ideal I of R is maximal if I 6= R and if I ⊆ J ⊆ R holds for some ideal J, then
J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples

1. If n 6= 0, then the ideal M = (n) of R = Z is maximal if and only if n is prime.

2. Let R = Q[x ] be the set of all polynomials over Q. The ideal M = (x)
consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring Q[x ]/(x) have the form f (x) + M = a0 + M.

3. Let R = Z2[x ], the polynomials over Z2. The ideal M = (x2 + x + 1) is
maximal, and R/M ∼= F4, the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.
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Maximal ideals

Theorem

Let R be a commutative ring with 1. The following are equivalent for an ideal I ⊆ R.

(i) I is a maximal ideal;

(ii) R/I is simple;

(iii) R/I is a field.

Proof

The equivalence (i)⇔(ii) is immediate from the Correspondence Theorem.

For (ii)⇔(iii), we’ll show that an arbitrary ring R is simple iff R is a field.

“⇒”: Assume R is simple. Then (a) = R for any nonzero a ∈ R.

Thus, 1 ∈ (a), so 1 = ba for some b ∈ R, so a ∈ U(R) and R is a field. X

“⇐”: Let I ⊆ R be a nonzero ideal of a field R. Take any nonzero a ∈ I .

Then a−1a ∈ I , and so 1 ∈ I , which means I = R. X �
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Prime ideals

Definition

Let R be a commutative ring. An ideal P ⊂ R is prime if ab ∈ P implies either a ∈ P
or b ∈ P.

Note that p ∈ N is a prime number iff p = ab implies either a = p or b = p.

Examples

1. The ideal (n) of Z is a prime ideal iff n is a prime number (possibly n = 0).

2. In the polynomial ring Z[x ], the ideal I = (2, x) is a prime ideal. It consists of all
polynomials whose constant coefficient is even.

Theorem

An ideal P ⊆ R is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is
immediate:

Corollary

In a commutative ring, every maximal ideal is prime.
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Divisibility and factorization

A ring is in some sense, a generalization of the familiar number systems like Z, R,
and C, where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

multiplication is commutative,

there are no (nonzero) zero divisors.

Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, R is assumed to be an
integral domain, and we will define R∗ := R \ {0}.

The integers have several basic properties that we usually take for granted:

every nonzero number can be factored uniquely into primes;

any two numbers have a unique greatest common divisor and least common
multiple;

there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains! We would like to
understand this better.
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Divisibility

Definition

If a, b ∈ R, say that a divides b, or b is a multiple of a if b = ac for some c ∈ R. We
write a | b.

If a | b and b | a, then a and b are associates, written a ∼ b.

Examples

In Z: n and −n are associates.

In R[x ]: f (x) and c · f (x) are associates for any c 6= 0.

The only associate of 0 is itself.

The associates of 1 are the units of R.

Proposition (HW)

Two elements a, b ∈ R are associates if and only if a = bu for some unit u ∈ U(R).

This defines an equivalence relation on R, and partitions R into equivalence classes.
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Irreducibles and primes

Note that units divide everything: if b ∈ R and u ∈ U(R), then u | b.

Definition

If b ∈ R is not a unit, and the only divisors of b are units and associates of b, then b
is irreducible.

An element p ∈ R is prime if p is not a unit, and p | ab implies p | a or p | b.

Proposition

If 0 6= p ∈ R is prime, then p is irreducible.

Proof

Suppose p is prime but not irreducible. Then p = ab with a, b 6∈ U(R).

Then (wlog) p | a, so a = pc for some c ∈ R. Now,

p = ab = (pc)b = p(cb) .

This means that cb = 1, and thus b ∈ U(R), a contradiction. �
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Irreducibles and primes

Caveat: Irreducible 6⇒ prime

Consider the ring R−5 := {a + b
√
−5 : a, b ∈ Z}.

3 | (2 +
√
−5)(2−

√
−5) = 9 = 3 · 3 ,

but 3 - 2 +
√
−5 and 3 - 2−

√
−5.

Thus, 3 is irreducible in R−5 but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique
factorization.

Things can get really bad: not even the lengths of factorizations into irreducibles
need be the same!

For example, consider the ring R = Z[x2, x3]. Then

x6 = x2 · x2 · x2 = x3 · x3.

The element x2 ∈ R is not prime because x2 | x3 · x3 yet x2 - x3 in R (note: x 6∈ R).
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Principal ideal domains
Fortunately, there is a type of ring where such “bad things” don’t happen.

Definition

An ideal I generated by a single element a ∈ R is called a principal ideal. We denote
this by I = (a).

If every ideal of R is principal, then R is a principal ideal domain (PID).

Examples

The following are all PIDs (stated without proof):

The ring of integers, Z.

Any field F .

The polynomial ring F [x ] over a field.

As we will see shortly, PIDs are “nice” rings. Here are some properties they enjoy:

pairs of elements have a “greatest common divisor” & “least common multiple”;

irreducible ⇒ prime;

Every element factors uniquely into primes.
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Greatest common divisors & least common multiples

Proposition

If I ⊆ Z is an ideal, and a ∈ I is its smallest positive element, then I = (a).

Proof

Pick any positive b ∈ I . Write b = aq + r , for q, r ∈ Z and 0 ≤ r < a.

Then r = b − aq ∈ I , so r = 0. Therefore, b = qa ∈ (a). �

Definition

A common divisor of a, b ∈ R is an element d ∈ R such that d | a and d | b.

Moreover, d is a greatest common divisor (GCD) if c | d for all other common
divisors c of a and b.

A common multiple of a, b ∈ R is an element m ∈ R such that a | m and b | m.

Moreover, m is a least common multiple (LCM) if m | n for all other common
multiples n of a and b.
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Nice properties of PIDs

Proposition

If R is a PID, then any a, b ∈ R∗ have a GCD, d = gcd(a, b).

It is unique up to associates, and can be written as d = xa + yb for some x , y ∈ R.

Proof

Existence. The ideal generated by a and b is

I = (a, b) = {ua + vb : u, v ∈ R} .

Since R is a PID, we can write I = (d) for some d ∈ I , and so d = xa + yb.

Since a, b ∈ (d), both d | a and d | b hold.

If c is a divisor of a & b, then c | xa + yb = d , so d is a GCD for a and b. X

Uniqueness. If d ′ is another GCD, then d | d ′ and d ′ | d , so d ∼ d ′. X �
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Nice properties of PIDs

Corollary

If R is a PID, then every irreducible element is prime.

Proof

Let p ∈ R be irreducible and suppose p | ab for some a, b ∈ R.

If p - a, then gcd(p, a) = 1, so we may write 1 = xa + yp for some x , y ∈ R. Thus

b = (xa + yp)b = x(ab) + (yb)p .

Since p | x(ab) and p | (yb)p, then p | x(ab) + (yb)p = b. �

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)

If R is a PID, then any a, b ∈ R∗ have an LCM, m = lcm(a, b).

It is unique up to associates, and can be characterized as a generator of the ideal
I := (a) ∩ (b).
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Unique factorization domains

Definition

An integral domain is a unique factorization domain (UFD) if:

(i) Every nonzero element is a product of irreducible elements;

(ii) Every irreducible element is prime.

Examples

1. Z is a UFD: Every integer n ∈ Z can be uniquely factored as a product of
irreducibles (primes):

n = pd1
1 pd2

2 · · · p
dk
k .

This is the fundamental theorem of arithmetic.

2. The ring Z[x ] is a UFD, because every polynomial can be factored into
irreducibles. But it is not a PID because the following ideal is not principal:

(2, x) = {f (x) : the constant term is even}.

3. The ring R−5 is not a UFD because 9 = 3 · 3 = (2 +
√
−5)(2−

√
−5).

4. We’ve shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.
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Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A
ring is Noetherian if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

stabilizes, meaning that Ik = Ik+1 = Ik+2 = · · · holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define

X = {a ∈ R∗ \ U(R) : a can’t be written as a product of irreducibles}.

If X 6= ∅, then pick a1 ∈ X . Factor this as a1 = a2b, where a2 ∈ X and b 6∈ U(R).
Then (a1) ( (a2) ( R, and repeat this process. We get an ascending chain

(a1) ( (a2) ( (a3) ( · · ·

that does not stabilize. This is impossible in a PID, so X = ∅. �
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Summary of ring types

fields

Q

AR
R(
√
−π) Q(

√
m)

Z2[x]/(x2 +x+1)

F256

CZp

Q( 3
√

2, ζ)

PIDs
F [x ] Z

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5

commutative rings

2Z

Z× Z Z6

all rings
RG Mn(R)

H

M. Macauley (Clemson) Section 7: Ring theory Math 4120, Modern algebra 35 / 46

mailto:macaule@clemson.edu


The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the
Elements, in which he described what is now known as
the Euclidean algorithm:

Proposition VII.2 (Euclid’s Elements)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

If a | b, then gcd(a, b) = a;

If a = bq + r , then gcd(a, b) = gcd(b, r).

This is best seen by an example: Let a = 654 and b = 360.

654 = 360 · 1 + 294 gcd(654, 360) = gcd(360, 294)
360 = 294 · 1 + 66 gcd(360, 294) = gcd(294, 66)
294 = 66 · 4 + 30 gcd(294, 66) = gcd(66, 30)
66 = 30 · 2 + 6 gcd(66, 30) = gcd(30, 6)
30 = 6 · 5 gcd(30, 6) = 6.

We conclude that gcd(654, 360) = 6.
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Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm
still works.

Definition

An integral domain R is Euclidean if it has a degree function d : R∗ → Z satisfying:

(i) non-negativity: d(r) ≥ 0 ∀r ∈ R∗.

(ii) monotonicity: d(a) ≤ d(ab) for all a, b ∈ R∗.

(iii) division-with-remainder property: For all a, b ∈ R, b 6= 0, there are q, r ∈ R
such that

a = bq + r with r = 0 or d(r) < d(b) .

Note that Property (ii) could be restated to say: If a | b, then d(a) ≤ d(b);

Examples

R = Z is Euclidean. Define d(r) = |r |.
R = F [x ] is Euclidean if F is a field. Define d(f (x)) = deg f (x).

The Gaussian integers R−1 = Z[
√
−1] = {a + bi : a, b ∈ Z} is Euclidean with

degree function d(a + bi) = a2 + b2.
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Euclidean domains

Proposition

If R is Euclidean, then U(R) = {x ∈ R∗ : d(x) = d(1)}.

Proof

⊆”: First, we’ll show that associates have the same degree. Take a ∼ b in R∗:

a | b =⇒ d(a) ≤ d(b)

b | a =⇒ d(b) ≤ d(a)
=⇒ d(a) = d(b).

If u ∈ U(R), then u ∼ 1, and so d(u) = d(1). X

“⊇”: Suppose x ∈ R∗ and d(x) = d(1).

Then 1 = qx + r for some q ∈ R with either r = 0 or d(r) < d(x) = d(1).

If r 6= 0, then d(1) ≤ d(r) since 1 | r .

Thus, r = 0, and so qx = 1, hence x ∈ U(R). X �
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Euclidean domains

Proposition

If R is Euclidean, then R is a PID.

Proof

Let I 6= 0 be an ideal and pick some b ∈ I with d(b) minimal.

Pick a ∈ I , and write a = bq + r with either r = 0, or d(r) < d(b).

This latter case is impossible: r = a− bq ∈ I , and by minimality, d(b) ≤ d(r).

Therefore, r = 0, which means a = bq ∈ (b). Since a was arbitrary, I = (b). �

Exercises.

(i) The ideal I = (3, 2 +
√
−5) is not principal in R−5.

(ii) If R is an integral domain, then I = (x , y) is not principal in R[x , y ].

Corollary

The rings R−5 (not a PID or UFD) and R[x , y ] (not a PID) are not Euclidean.
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Algebraic integers
The algebraic integers are the roots of monic polynomials in Z[x ]. This is a subring
of the algebraic numbers (roots of all polynomials in Z[x ]).

Assume m ∈ Z is square-free with m 6= 0, 1. Recall the quadratic field

Q(
√
m) =

{
p + q

√
m | p, q ∈ Q

}
.

Definition

The ring Rm is the set of algebraic integers in Q(
√
m), i.e., the subring consisting of

those numbers that are roots of monic quadratic polynomials x2 + cx + d ∈ Z[x ].

Facts

Rm is an integral domain with 1.

Since m is square-free, m 6≡ 0 (mod 4). For the other three cases:

Rm =


Z[
√
m] =

{
a + b

√
m : a, b ∈ Z

}
m ≡ 2 or 3 (mod 4)

Z
[

1+
√
m

2

]
=
{
a + b

(
1+
√
m

2
) : a, b ∈ Z

}
m ≡ 1 (mod 4)

R−1 is the Gaussian integers, which is a PID. (easy)

R−19 is a PID. (hard)
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Algebraic integers

Definition

For x = r + s
√
m ∈ Q(

√
m), define the norm of x to be

N(x) = (r + s
√
m)(r − s

√
m) = r 2 −ms2 .

Rm is norm-Euclidean if it is a Euclidean domain with d(x) = |N(x)|.

Note that the norm is multiplicative: N(xy) = N(x)N(y).

Exercises

Assume m ∈ Z is square-free, with m 6= 0, 1.

u ∈ U(Rm) iff |N(u)| = 1.

If m ≥ 2, then U(Rm) is infinite.

U(R−1) = {±1,±i} and U(R−3) =
{
± 1, ± 1±

√
−3

2

}
.

If m = −2 or m < −3, then U(Rm) = {±1}.
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Euclidean domains and algebraic integers

Theorem

Rm is norm-Euclidean iff

m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Theorem (D.A. Clark, 1994)

The ring R69 is a Euclidean domain that is not norm-Euclidean.

Let α = (1 +
√

69)/2 and c > 25 be an integer. Then the following degree function
works for R69, defined on the prime elements:

d(p) =

{
|N(p)| if p 6= 10 + 3α

c if p = 10 + 3α

Theorem

If m < 0 and m 6∈ {−11,−7,−3,−2,−1}, then Rm is not Euclidean.

Open problem

Classify which Rm’s are PIDs, and which are Euclidean.
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PIDs that are not Euclidean

Theorem

If m < 0, then Rm is a PID iff

m ∈ {−1,−2,−3,−7,−11︸ ︷︷ ︸
Euclidean

,−19,−43,−67,−163} .

Recall that Rm is norm-Euclidean iff

m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Corollary

If m < 0, then Rm is a PID that is not Euclidean iff m ∈ {−19,−43,−67,−163}.
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Algebraic integers

Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the
leading term: red = 1 (algebraic integer), green = 2, blue = 3, yellow = 4. Large dots mean
fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).
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Algebraic integers

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic
polynomial of degree ≤ 7 with coefficients from {0,±1,±2,±3,±4,±5}. From Wikipedia.
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Summary of ring types

fields

QA
R(
√
−π, i) R

Fpn

CZp

Q(
√
m)

Euclidean domains

Z F [x ]

R−1 R69

PIDs
R−43

R−19

R−67

R−163

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5 2Z

Z× Z Z6

commutative rings

all rings
RG Mn(R)

H
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