Matthew Macauley Assignment online_HW_11_quotient-remainder due 06/10/2019 at 11:59pm EDT

1. (3 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_ 4.pg What are the greatest common divisors of the following pairs of integers? (a) $2^3 \cdot 3^3 \cdot 5^2$ and $2^3 \cdot 3 \cdot 5^3$ Answer = ______ (b) $2^9 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$ and $3^9 \cdot 7^2 \cdot 13^9 \cdot 17$ Answer = ______ (c) $2^3 \cdot 7$ and $5^3 \cdot 13$ Answer = _____

2. (5 points) Library/NewHampshire/unh_schoolib/GCF_LCM/gcfsrs
301.pg

For each of the following pairs of numbers, find the GCF. [In more advanced and college courses this will be called the GCD (greatest common divisor) rather than GCF (greatest common factor)].

GCF(30,42)=___ GCF(175,275)=___ GCF(360,504)=___ For each of the following pairs of monomials, find the GCF. GCF($25m^4$, $20m^{10}$)=___ GCF($126m^9n^{20}$, $90m^{15}n^{16}$)=____

3. (6 points) Library/SDSU/Discrete/IntegersAndRationals/facto rB3.pg

Let $a = p^2 \cdot q$ and $b = p \cdot q \cdot r$ where p, q, r are distinct primes. For the following questions, indicate the correct exponent. Enter 0 if necessary. Determine gcd(a,b) p^n for $n = ______$ q^n for $n = _______$ r^n for $n = _______$

Determine lcm(a,b)

 p^n for n =____

 q^n for n =____

 r^n for n =____

4. (4 points) Library/SDSU/Discrete/IntegersAndRationals/quore mB2.pg

Let a = 16, b = 3

For *a* divided by *b*, what is the integer quotient? _____ What is the remainder? _____

For *b* divided by *a*, what is the integer quotient? _____

What is the remainder?

5. (7 points) Library/SUNYSB/modOperator.pg

Answer the following questions where *div* is for finding integer quotient and *mod* is for remainder.

 30 div 10 = _____,

 30 mod 10 = _____,

 -22 div 3 = _____,

 -22 mod 3 = ______,

 21 div 4 = _____,

 21 mod 4 = ______,

 -24 div 7 = _____,

 -24 mod 7 = ______,

 29 mod 4 = ______,

 -24 div 9 = _____,

 -24 mod 9 = ______,

 -24 mod 9 = ______,

 150710061 mod 101 = _______

6. (4 points) Library/SDSU/Discrete/IntegersAndRationals/pL6.p

g

The remainder when *a* is divided by 7 is 2 and the remainder when *b* is divided by 7 is 5. (So $a \mod 7 = 2$, $b \mod 7 = 5$)

Find:

 $(a+a) \mod 7$ ____ $(a+b) \mod 7$ ____ $(3a) \mod 7$ ____

[Hint: test some specific values for a and b that satisfy the hypotheses.]

7. (7 points) Library/SDSU/Discrete/IntegersAndRationals/pL5.p g

Here is another version of the Quotient-Remainder Theorem:

Given any integers n, d with $d \neq 0$, there exist unique integers q, r satisfying

⁽²*b*) mod 7 ____

(1) n = dq + r

(2) $-d/2 < r \le d/2$

Find the quotient and remainder (using the theorem above!) for the following pairs of integers:

n = 11, d = 2 $q = _, r = _.$ n = 11, d = 3 $q = _, r = _.$ n = -11, d = 3 $q = _, r = _.$ n = 54 d = 7 $q = _, r = _.$ n = -54 d = 7 $q = _, r = _.$ n = 52 d = 8 $q = _, r = _.$ n = -52 d = 8

 $q = _, r = _$.

8. (7 points) Library/Rochester/setDiscrete7NumberTheory/ur_di
s_7_1.pg

The goal of this exercise is to practice finding the inverse modulo *m* of some (relatively prime) integer *n*. We will find the inverse of 11 modulo 46, i.e., an integer *c* such that $11c \equiv 1 \pmod{46}$.

First we perform the Euclidean algorithm on 11 and 46: 46 = 4* ______ + _____

[Note your answers on the second row should match the ones on the first row.]

Thus gcd(11,46)=1, i.e., 11 and 46 are relatively prime.

Now we run the Euclidean algorithm backwards to write 1 = 46s + 11t for suitable integers *s*,*t*.

s = _____

t = _____

when we look at the equation $46s + 11t \equiv 1 \pmod{46}$, the multiple of 46 becomes zero and so we get

 $11t \equiv 1 \pmod{46}$. Hence the multiplicative inverse of 11 modulo 46 is _____

9. (9 points) Library/UMass-Amherst/Abstract-Algebra/PS-Congru ences/Congruences3.pg

Compute:

gcd(65, 40) =_____

Find a pair of integers x and y such that 65x + 40y = gcd(65, 40)

 $(x,y) = (__, __)$

10. (8 points) Library/Rochester/setDiscrete7NumberTheory/ur_d is_7_2.pg

Find the smallest positive integer *x* that solves the congruence:

 $26x \equiv 2 \pmod{187}$

x = _____

(Hint: From running the Euclidean algorithm forwards and backwards we get 1 = s(26) + t(187)). Find *s* and use it to solve the congruence.)

11. (4 points) Library/Rochester/setDiscrete6Integers/ur_dis_6 _5.pg

Find the memory locations which are assigned by the hashing function $h(k) = k \mod 101$ to the records of students with the following Social Security numbers:

(Note enter the canonical representative for the answer modulo 101, thus your answer should be an integer between 0 and 100 inclusive for each part.)

726841998	 949965180	 245042527	
142311929 -			

12. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Congr uences/Congruences10.pg

What is the remainder of 7^{2629} when divided by 13?

Note: You should be able to do this problem without using a calculator or computer!

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America