1. (3 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_ 4.pg

What are the greatest common divisors of the following pairs of integers?
(a) $2^{3} \cdot 3^{3} \cdot 5^{2}$ and $2^{3} \cdot 3 \cdot 5^{3}$

Answer $=$ \qquad
(b) $2^{9} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$ and $3^{9} \cdot 7^{2} \cdot 13^{9} \cdot 17$

Answer $=$ \qquad
(c) $2^{3} \cdot 7$ and $5^{3} \cdot 13$

Answer = \qquad
2. (5 points) Library/NewHampshire/unh_schoolib/GCF_LCM/gcfsrs 301.pg

For each of the following pairs of numbers, find the GCF. [In more advanced and college courses this will be called the GCD (greatest common divisor) rather than GCF (greatest common factor)].
$\operatorname{GCF}(30,42)=$
$\operatorname{GCF}(175,275)=$
$\operatorname{GCF}(360,504)=$
For each of the following pairs of monomials, find the GCF. $\operatorname{GCF}\left(25 m^{4}, 20 m^{10}\right)=$
$\operatorname{GCF}\left(126 m^{9} n^{20}, 90 m^{15} n^{16}\right)=$
3. (6 points) Library/SDSU/Discrete/IntegersAndRationals/facto rB3.pg

Let $a=p^{2} \cdot q$ and $b=p \cdot q \cdot r$
where p, q, r are distinct primes.
For the following questions, indicate the correct exponent. Enter 0 if necessary.

Determine $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$
p^{n} for $n=$
q^{n} for $n=$
r^{n} for $n=$
Determine Icm(a,b)
p^{n} for $n=$
q^{n} for $n=$
r^{n} for $n=$ _
4. (4 points) Library/SDSU/Discrete/IntegersAndRationals/quore mB2.pg

Let $a=16, b=3$
For a divided by b, what is the integer quotient? \qquad
What is the remainder? \qquad
For b divided by a, what is the integer quotient?

What is the remainder? \qquad
5. (7 points) Library/SUNYSB/modOperator.pg

Answer the following questions where $d i v$ is for finding integer quotient and mod is for remainder.

```
\(30 \operatorname{div} 10=\)
```

\qquad

```
\(30 \bmod 10=\)
```

\qquad

```
\(-22 \operatorname{div} 3=\)
\(-22 \bmod 3=\)
```

\qquad

```
\(21 \operatorname{div} 4=\)
```

\qquad

```
\(21 \bmod 4=\)
```

\qquad

```
\(-24 \operatorname{div} 7=\)
```

\qquad

```
\(-24 \bmod 7=\)
``` \(\qquad\)
```

$29 \operatorname{div} 4=$

``` \(\qquad\)
```

$29 \bmod 4=$

``` \(\qquad\)
```

$-24 \operatorname{div} 9=$

``` \(\qquad\)
```

$-24 \bmod 9=$

``` \(\qquad\)
```

$443379094 \bmod 101=$

``` \(\qquad\)
``` \(150710061 \bmod 101=\)
``` \(\qquad\)
```

6. (4 points) Library/SDSU/Discrete/IntegersAndRationals/pL6.p
``` g

The remainder when \(a\) is divided by 7 is 2 and the remainder when \(b\) is divided by 7 is 5 .
(So \(a \bmod 7=2, b \bmod 7=5\))

Find:
\((a+a) \bmod 7\) \(\qquad\)
\((a+b) \bmod 7\) \(\qquad\)
(3a) \(\bmod 7\)
(2b) \(\bmod 7\) \(\qquad\)
[Hint: test some specific values for a and b that satisfy the hypotheses.]
7. (7 points) Library/SDSU/Discrete/IntegersAndRationals/pL5.p g

Here is another version of the Quotient-Remainder Theorem:
Given any integers \(n, d\) with \(d \neq 0\), there exist unique integers \(q, r\) satisfying
(1) \(n=d q+r\)
(2) \(-\mathrm{d} / 2<\mathrm{r} \leq \mathrm{d} / 2\)

Find the quotient and remainder (using the theorem above!) for the following pairs of integers:
\(\mathrm{n}=11, \mathrm{~d}=2\)
\(\mathrm{q}=\) \(\qquad\)
\(\mathrm{n}=11, \mathrm{~d}=3\)
\(\mathrm{q}=\longrightarrow, \mathrm{r}=\longrightarrow\).
\(\mathrm{n}=-11, \mathrm{~d}=3\)
\(\mathrm{q}=\ldots, \mathrm{r}=\)
\(\mathrm{n}=54 \mathrm{~d}=7\)
\(\mathrm{q}=\longrightarrow, \mathrm{r}=\)
\(n=-54 d=7\)
\(\mathrm{q}=\ldots, \mathrm{r}=\ldots\).
\(\mathrm{n}=52 \mathrm{~d}=8\)
\(\mathrm{q}=\ldots, \mathrm{r}=\)
\(\mathrm{n}=-52 \mathrm{~d}=8\)
\(\mathrm{q}=\longrightarrow, \mathrm{r}=\)
8. (7 points) Library/Rochester/setDiscrete7NumberTheory/ur_di s_7_1.pg
The goal of this exercise is to practice finding the inverse modulo \(m\) of some (relatively prime) integer \(n\). We will find the inverse of 11 modulo 46 , i.e., an integer \(c\) such that \(11 c \equiv 1\) \((\bmod 46)\).

First we perform the Euclidean algorithm on 11 and 46:
\(46=4 *\) \(\qquad\) \(+\) \(\qquad\)
[Note your answers on the second row should match the ones on the first row.]

Thus \(\operatorname{gcd}(11,46)=1\), i.e., 11 and 46 are relatively prime.
Now we run the Euclidean algorithm backwards to write \(1=46 s+11 t\) for suitable integers \(s, t\).
\(s=\) \(\qquad\)
\(t=\)
when we look at the equation \(46 s+11 t \equiv 1(\bmod 46)\), the multiple of 46 becomes zero and so we get
\(11 t \equiv 1(\bmod 46)\). Hence the multiplicative inverse of \(11 \bmod -\) ulo 46 is
9. (9 points) Library/UMass-Amherst/Abstract-Algebra/PS-Congru ences/Congruences3.pg
Compute:
\[
\operatorname{gcd}(65,40)=
\]

Find a pair of integers \(x\) and \(y\) such that \(65 x+40 y=\) \(\operatorname{gcd}(65,40)\)
\[
(x, y)=(-,-)
\]
10. (8 points) Library/Rochester/setDiscrete7NumberTheory/ur_d is_7_2.pg

Find the smallest positive integer \(x\) that solves the congruence:
\[
26 x \equiv 2 \quad(\bmod 187)
\]
\(x=\) \(\qquad\)
(Hint: From running the Euclidean algorithm forwards and backwards we get \(1=s(26)+t(187)\). Find \(s\) and use it to solve the congruence.)
11. (4 points) Library/Rochester/setDiscrete6Integers/ur_dis_6 -5.pg
Find the memory locations which are assigned by the hashing function \(h(k)=k \bmod 101\) to the records of students with the following Social Security numbers:
(Note enter the canonical representative for the answer modulo 101, thus your answer should be an integer between 0 and 100 inclusive for each part.)
\(726841998 \quad 949965180 \quad 245042527 \quad\) _ \(\quad\) _ 142311929
12. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Congr uences/Congruences10.pg

What is the remainder of \(7^{2629}\) when divided by \(13 ?\)

Note: You should be able to do this problem without using a calculator or computer!

Generated by © WeBWorK, http://webwork.maa.org, Mathematical Association of America```

