Matthew Macauley Assignment online_HW_13_equivalence_relations due 06/15/2019 at 11:59pm EDT

clemson-math4190

1. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relations/Relations6.pg In this problem we work out step-by-step the procedure for checking an equivalence relation. Denote by \mathbb{Z} the set of all integers. Declare that two integers x, y are related if $x - y$ is an integer multiple of 5. In symbols:	Next, we check (2). This means checking to make sure that for all integers x, y , we have $x \sim y \Leftrightarrow y \sim x$. Unwind the defini- tion of \sim as we have done for (1) and we see that $x \sim y \iff __= 5m$ for some integer m $y \sim x \iff __= 5m$ for some integer m
$x \sim y \iff 5$ divides $x - y$.	Based on that, is (2) true? If so, enter Y; if not, enter a pair of integers for which this is false.
We want to check if this is an equivalence relation. That means we need to check if \sim is (1) Reflexive (2) Symmetric (3) Transitive	Finally, we check (3). This means checking to make sure that for all integers x, y, z , if $x \sim y$ and $y \sim z$ then $x \sim z$.
We begin with (1). This means checking to make sure that for all integers <i>x</i> , we have $x \sim x$. Recall the definition of \sim for this problem and we see that this is equivalent to saying that for	Is this true? If so, enter Y; if not, give a triple of integers for which this fails.
all integers x, we have that $(x - x)$ is an integer multiple of 5.	Finally, based on this calculation, is \sim an equivalence relation on the set of integers? Enter Y or N.
Is this true? If so, enter Y; if not, enter an integer for which this is false.	2. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati ons/Relations2.pg

For the following relations on the set of college students, determine if it satisfies each of the following conditions:

	Reflexive	Symmetric	Transitive	Equivalence Relation
$A \sim B \Leftrightarrow A$ is strictly taller than B				
$A \sim B \Leftrightarrow A, B \text{ took 4 class(es) together}$		·		
$A \sim B \Leftrightarrow A, B$ have the same major				

Please enter *Y* or *N* in each of the boxes.

3. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relations/Relations3.pg

For the following relations on the set of POSITIVE integers, determine if it satisfies each of the following conditions:

	Reflexive	Symmetric	Transitive	Equivalence Relation
$m \sim n \Leftrightarrow 18$ divides $m - n$				
$m \sim n \Leftrightarrow 16 \text{ divides } m + n$				
$m \sim n \Leftrightarrow 8$ divides mn				

Please enter *Y* or *N* in each of the boxes.

4. (6 points)	Library/UMass-Amherst/Abstract-Algebra/PS-Relati
ons/Relations4	.pg

For the following relations on the set of points on the plane, determine if it satisfies each of the following conditions (please enter Y or N in each of the boxes):

	Reflexive	Symmetric	Transitive	Equivalence Relation
$(u_1, u_2) \sim (w_1, w_2) \Leftrightarrow u_1 = w_1$				
$(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow$ either $(x_1, y_1) = (x_2, y_2)$ or the				
line segment joining the two points have a slope > 9				
$(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow$ the distance between the points is > 10				

^{5. (10} points) Library/UMass-Amherst/Abstract-Algebra/PS-Relat ions/Relations1.pg

For each of the following relations on the set of real numbers, determine if it satisfies each the following conditions (enter *Y* or *N* in each of the boxes):

	Reflexive	Symmetric	Transitive	Equivalence Relation
$x \sim y \Leftrightarrow x^2 > y^2$				
$x \sim y \Leftrightarrow x \le y$				
$x \sim y \Leftrightarrow x^2 + y^2 = 1$				
$x \sim y \Leftrightarrow x - y < 7$				
$x \sim y \Leftrightarrow xy = 0$				

6. (8 points) Library/MC/Proofs/Relations/Equvalence01.pg Order 7 of the following sentences so that they form a logical proof of the statement:

Suppose *R* is a symmetric and transitive relation on *A* (i.e. $A \times A$). Further suppose that for each $a \in A$ that there exists $b \in A$ such that $(a,b) \in R$.

Show: *R* is an equivalence relation.

Quick Hint? What makes R an equivalence relation?

- *R* is reflexive
- Assume that *R* is symmetric and transitive on *A* and that each element in *A* is related to at least one other element in *A*.
- Let (a,b) be an arbitrary element of *R*.

- $(a,b) \in R$ and $(b,a) \in R$ implies $(a,a) \in R$ by transitivity
- *R* is an equivalence relation
- Too much may be the equivalent of none at all.
- $\exists b \in A$ such that $(a,b) \in R$
- Assume R is symmetric and transitive and $\forall a \in A, (a, a) \in R$.
- $(b,a) \in R$ by symmetry
- Let *a* be an arbitrary element of *A*.
- $(a,a) \in R \implies \exists b \in A$ such that $(a,b) \in R$ and $(b,a) \in R$ by transitivity

7. (8 points) Library/MC/Proofs/Relations/Equvalence02.pg

Order 10 of the following sentences so that they form a logical proof of the statement:

> For $A = Z \times Z$, define a relation R on A by: $((a,b), (c,d)) \in R \iff ad = bc$ Prove that R is an equivalence relation on A.

- Consider $((a,b),(c,d)) \in R$.
- Then, ad = bc and cf = de and so af = be.
- Define R on $Z \times Z$ such that $((a,b),(c,d)) \in R \iff ad = bc$
- Then $ad = bc \implies bc = ad$ and so (c,d)R(a,b).
- Hence, *R* is transitive. ; br; For any (a,b), ab = ba.
- Hence, *R* is symmetric since $((a,b),(a,b)) \in R$.
- Nathan is a goob.
- Thus *R* is an equivalence relation.
- Hence, *R* is reflexive and (a,b)R(c,d) means *R* is symmetric and transitive.
- $(a,b)R(c,d) \implies ab = cd.$
- Therefore (a,b)R(a,b)
- Hence *R* is symmetric. ibr; Next consider (a,b)R(c,d)and (c,d)R(e,f)
- Hence *R* is reflexive.
- $af = be \implies (a,b)R(e,f)$

8. (8 points) Library/MC/Proofs/Relations/Partition02.pg Among the options below there are 7 different partitions of the set A = 0, 1, 2, ..., 15. List them on the right according to the number of equivalence classes that each partition induces.

- 1,2,...14,15,16
- 1,2,...,5,6,8,...,14
- 0,1,2,...,8,9,10,...,15
- 0,15,1,14,2,13,3,12,...,7,8
- 0,1,2,...14,15
- $S_0 = 0, S_1 = 3, 6, 9, S_2 = 1, 4, 7, 10, S_3 = 2, 5, 8, 11, A S_0 S_1 S_2 S_3$
- Z₀, Z₁, Z₂, Z₃, Z₄, Z₅, jbr; Z₆, Z₇, ..., Z₁₄, Z₁₅
- 0,1,2,...,15
- even positive integers less than 15, jbr¿odd positive integers less than 15,0,15
- even numbers less than 15,;br¿odd numbers less than 15,15

• even positive integers less than 15,;br¿odd positive integers less than 15,0,15

9. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati ons/Relations5.pg

Determine all pairs of integers A, B such that $(m, n) \sim (u, v) \iff m - An = u - Bv$

is an equivalence relation on the set of all pairs of integers.

 $A = ___$ $B = ____$

 $10. \ (6 \ points) \ \texttt{Library/UMass-Amherst/Abstract-Algebra/PS-Funct} \\ \texttt{ions/Functions1.pg}$

Consider the function

 $\phi:\{8,9,...,16,17\} \rightarrow \{8,9,...,16,17\}$

x	8	9	10	11	12	13	14	15	16	17
$\varphi(x)$	13	16	8	9	14	17	12	11	15	9

(a) Is this one-to-one? ____ (Y/N)

(b) Is this onto? ____ (Y/N)

(c) Is this bijective? ____ (Y/N)

11. (5 points) Library/UMass-Amherst/Abstract-Algebra/PS-Funct ions/Functions2.pg

Complete the following table of values of a function

 $\phi: \{6,7,...,14,15\} \rightarrow \{0,1,...,8,9\}$

3

so that ϕ is onto.

12. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relat ions/Relations7.pg

Let X be the set $\{-18, -6, -1\}$. For the first three parts of this problem you are asked to define a function $f : X \to X$ so that the relation

$$u \sim w \Leftrightarrow w = f(u)$$

satisfies each of the following conditions.

(a) \sim is reflexive

(b) \sim is symmetric

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

(c) \sim is transitive

(d) [optional: see your instructor] Let *Y* be an arbitrary nonempty set. Determine all functions $g: Y \to Y$ so that the relation

$$a \sim b \Leftrightarrow b = g(a)$$

is

- ReflexiveSymmetric
- Transitive

4