Solve each of the following congruences. Make sure that the number you enter is in the range $[0, M-1]$ where M is the modulus of the congruence. If there is more than one solution, enter the answer as a list separated by commas. If there is no answer, enter N .
(a) $151 x=1(\bmod 374)$
$x=$
(b) $114 x=116(\bmod 374)$
$x=$
5. (8 points) Library/Rochester/setDiscrete7NumberTheory/ur_di s_7_5.pg
Use Fermat's Little theorem to compute the following remainders for 3^{963} (Always use canonical representatives.)
$3^{963}=_\bmod 5$
$3^{963}=_\bmod 7$
$3^{963}=\quad \bmod 11$

Use your answers above to find the canonical representative of $3^{963} \bmod 385$ by using the Chinese Remainder Theorem. [Note $385=5 \cdot 7 \cdot 11$ and that Fermat's Little Theorem cannot be used to directly find $3^{963} \bmod 385$ as 385 is not a prime and also since it is larger than the exponent.] $3^{963} \bmod 385$ is
6. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Congru ences/Congruences1.pg
Perform the following congruence computations. Make sure that the number you enter is ≥ 0 and $\leq N-1$, where N is the modulus of the congruence.

$$
\begin{aligned}
& 7685+6984 \equiv \\
& 5994-52 * 9344 \equiv-(\bmod 52) \\
& 10775+ \\
& 497 *(54323-692) * 4494-556 \equiv-264 \equiv 764 * 646(\bmod 41) \\
& \left.3920^{2} \equiv-(\bmod 87)\right)
\end{aligned}
$$

7. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Congru ences/Congruences6.pg

Which of the following values are needed to compute 3^{104} $(\bmod 41)$ using fast exponentiation? Mark Y/N accordingly:

i	$3^{2^{i}}(\bmod 41)$	Y / N
0	3	-
1	9	-
2	40	-
3	1	-
4	1	-
5	1	-
6	1	-
7	1	-

Use these values to compute $3^{104}(\bmod 41)$
$3^{104}(\bmod 41)=$ \qquad
8. (6 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_ 7.pg

Encrypt the message " HALT" by translating the letters into numbers
(via $A=0, B=1, C=2, D=3, E=4, F=5, G=6, H=7, I=$ 8,
$J=9, K=10, L=11, M=12, N=13, O=14, P=15, Q=$ $16, R=17$,
$S=18, T=19, U=20, V=21, W=22, X=23, Y=24, Z=25$)
and then applying the encryption function given, and then translating the numbers back into letters.
(a) $f(p)=(p+4) \bmod 26$ \qquad
(b) $f(p)=(p+13) \bmod 26$
(c) $f(p)=(p+3) \bmod 26$
9. (6 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_ 8.pg

Decrypt the following messages encrypted using the Caesar cipher:
$f(p)=(p+3) \bmod 26$
Alphabet: A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X, Y
(a) FUDCB KDWV
(b) HDW GLP VXP
(c) FEPGYTRD
10. (6 points) Library/ASU-topics/crypto/dec_aff.pg

Decrypt the message PUHUHUI which was encrypted using the affine cipher:

$$
f(p)=(21 p+20) \bmod 26
$$

Alphabet: $A=0, B=1, \ldots, Z=25$
Message: \qquad
11. (6 points) Library/ASU-topics/crypto/enc_aff.pg

Encrypt the message " MATH" by translating the letters into numbers
and then applying the encryption function given, and then translating the numbers back into letters.
(a) $f(p)=(19 p+4) \bmod 26$ \qquad
(b) $f(p)=(3 p+11) \bmod 26$
(c) $f(p)=(11 p+5) \bmod 26$ \qquad

Use $A=0, B=1, C=2, D=3, E=4, F=5, G=6, H=7, I=8$, $J=9, K=10, L=11, M=12, N=13, O=14, P=15, Q=16, R=$ $17, S=18, T=19, U=20, V=21, W=22, X=23, Y=24, Z=$ 25
12. (8 points) Library/Rochester/setDiscrete7NumberTheory/ur_d is_7_7.pg
(Modification of exercise 36 in section 2.5 of Rosen.)
The goal of this exercise is to work thru the RSA system in a simple case:
We will use primes $p=43, q=47$ and form $n=43 \cdot 47=2021$. [This is typical of the RSA system which chooses two large primes at random generally, and multiplies them to find n. The public will know n but p and q will be kept private.]

Now we choose our public key $e=17$. This will work since $\operatorname{gcd}(17,(p-1)(q-1))=\operatorname{gcd}(17,1932)=1$. [In general as long as we choose an 'e' with $\operatorname{gcd}(e,(p-1)(q-1))=1$, the system will work.]

Next we encode letters of the alphabet numerically say via the usual:

$$
\begin{aligned}
& (A=0, B=1, C=2, D=3, E=4, F=5, G=6, H=7, I=8, \\
& J=9, K=10, L=11, M=12, N=13, O=14, P=15, Q=16, R=17, \\
& S=18, T=19, U=20, V=21, W=22, X=23, Y=24, Z=25 .)
\end{aligned}
$$

We will practice the RSA encryption on the single integer 15. (which is the numerical representation for the letter "P"). In , $\mathrm{Z}_{\text {the language of the book, }} \mathrm{M}=15$ is our original message.

The coded integer is formed via $c=M^{e} \bmod n$.
Thus we need to calculate $15^{17} \bmod 2021$.

This is not as hard as it seems and you might consider using fast modular multiplication.

The canonical representative of $15^{17} \bmod 2021$ is \qquad

Generated by © WeBWorK, http://webwork.maa.org, Mathematical Association of America

