1. (4 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_num3.pgIntegers loss than or equal to n that are relatively prime to n. For
example fon n=14, we have $\{1,3,5,9,11,13\}$ are the positive
integers less than or equal to 14 which are relatively prime to
14. Thus $\phi(14) = 6$. Find:
 $\phi(2)$ _____
 $\phi(10)$ _____
 $\phi(50)$ _____(10)g2. (6 points) Library/SDSU/Discrete/IntegersAndRationals/pL7.p(10)

Find the smallest positive integer for which $x \mod 3 = 2$ and $x \mod 4 = 3$

What is the next smallest integer with this property?

[You will have to do some trial and error, but thinking about divisibility should lead you to some patterns.]

3. (6 points) Library/SDSU/Discrete/IntegersAndRationals/pL11. pg $\ensuremath{\mathsf{pg}}$

Find the smallest positive integer *x* such that:

 $x \mod 2 = 1$

 $x \mod 3 = 2$ and $x \mod 5 = 3$

x mod

What is the next integer with this property?

[You will have to do some trial and error, but thinking about divisibility should lead you to some patterns.]

4. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Congru ences/Congruences5.pg

Solve each of the following congruences. Make sure that the number you enter is in the range [0, M - 1] where *M* is the modulus of the congruence. If there is more than one solution, enter the answer as a list separated by commas. If there is no answer, enter N.

(a) $151x = 1 \pmod{374}$

 $x = _$

(b) $114x = 116 \pmod{374}$

x =_____

5. (8 points) Library/Rochester/setDiscrete7NumberTheory/ur_di
s_7_5.pg

Use Fermat's Little theorem to compute the following remainders for 3^{963} (Always use canonical representatives.)

$3^{963} = $	mod 5
$3^{963} = $	mod 7
$3^{963} = $	mod 11

1

Use your answers above to find the canonical representative of $3^{963} \mod 385$ by using the Chinese Remainder Theorem. [Note $385 = 5 \cdot 7 \cdot 11$ and that Fermat's Little Theorem cannot be used to directly find $3^{963} \mod 385$ as 385 is not a prime and also since it is larger than the exponent.] $3^{963} \mod 385$ is ______

6. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Congru ences/Congruences1.pg

Perform the following congruence computations. Make sure that the number you enter is ≥ 0 and $\leq N - 1$, where N is the modulus of the congruence.

 $\begin{array}{l} 7685+6984\equiv \underline{\qquad} \pmod{52} \\ 5994-52*9344\equiv \underline{\qquad} \pmod{47} \\ 10775+\underline{\qquad} -264\equiv 764*646 \pmod{41} \\ 497*(54323-692)*4494-556\equiv \underline{\qquad} \pmod{40} \\ 3920^2\equiv \underline{\qquad} \pmod{87}) \end{array}$

^{7. (6} points) Library/UMass-Amherst/Abstract-Algebra/PS-Congru ences/Congruences6.pg

	Which	of the	following	values	are nee	ded to	compute	3^{104}
1	$(mod \ 41)$	using	fast expone	entiation	? Mark	Y/N a	ccordingly	y:

i	$3^{2^i} \pmod{41}$	Y/N
0	3	
1	9	
2	40	
3	1	
4	1	
5	1	
6	1	
7	1	

Use these values to compute $3^{104} \pmod{41}$

 $3^{104} \pmod{41} = _$

8.	(6 points)	Library/Rochester/setDiscrete6Integers/ur	_dis_6_
7.pg			

Encrypt the message "HALT" by translating the letters into numbers

(via A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6, H = 7, I = 1)8.

J = 9, K = 10, L = 11, M = 12, N = 13, O = 14, P = 15, O = 1416, R = 17,

S = 18, T = 19, U = 20, V = 21, W = 22, X = 23, Y = 24, Z = 25)

and then applying the encryption function given, and then translating the numbers back into letters.

(a) $f(p) = (p+4) \mod 26$ (b) $f(p) = (p+13) \mod 26$ (c) $f(p) = (p+3) \mod 26$

9. (6 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_ 8.pg

Decrypt the following messages encrypted using the Caesar cipher:

$J(p) = (p+3) \mod 20$
Alphabet: A,B,C,D,E,F,G,H,I,J,K,L,M
(a) FUDCB KDWV
(b) HDW GLP VXP
(c) FEPGYTRD
(c) FEPGYTRD

10. (6 points) Library/ASU-topics/crypto/dec_aff.pg

Decrypt the message PUHUHUI which was encrypted using the affine cipher:

$$f(p) = (21p + 20) \mod 26$$

Alphabet: A = 0, B = 1, ..., Z = 25

Message: ____

11. (6 points) Library/ASU-topics/crypto/enc_aff.pg Encrypt the message "MATH" by translating the letters into numbers

and then applying the encryption function given, and then translating the numbers back into letters.

(a)
$$f(p) = (19p+4) \mod 26$$

(b) $f(p) = (3p+11) \mod 26$ _____
(c) $f(p) = (11p+5) \mod 26$ _____

Use A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6, H = 7, I = 8, J = 9, K = 10, L = 11, M = 12, N = 13, O = 14, P = 15, Q = 16, R = 10, L = 117, S = 18, T = 19, U = 20, V = 21, W = 22, X = 23, Y = 24, Z =25

12. (8 points) Library/Rochester/setDiscrete7NumberTheory/ur_d is 7 7.pg

(Modification of exercise 36 in section 2.5 of Rosen.)

The goal of this exercise is to work thru the RSA system in a simple case:

We will use primes p = 43, q = 47 and form $n = 43 \cdot 47 = 2021$. [This is typical of the RSA system which chooses two large primes at random generally, and multiplies them to find n. The public will know n but p and q will be kept private.]

Now we choose our public key e = 17. This will work since gcd(17, (p-1)(q-1)) = gcd(17, 1932) = 1. [In general as long as we choose an 'e' with gcd(e,(p-1)(q-1))=1, the system will work.]

Next we encode letters of the alphabet numerically say via the usual:

(A=0,B=1,C=2,D=3,E=4,F=5,G=6,H=7,I=8, J=9,K=10,L=11,M=12,N=13,O=14,P=15,Q=16,R=17, S=18,T=19,U=20,V=21,W=22,X=23,Y=24,Z=25.)

We will practice the RSA encryption on the single integer $f(n) = (n+3) \mod 26$ 15. (which is the numerical representation for the letter "P"). In I,N,O,P,Q,R,S,T,U,V,W,X,Y,Z_{the} language of the book, M=15 is our original message. The coded integer is formed via $c = M^e \mod n$.

Thus we need to calculate $15^{17} \mod 2021$.

This is not as hard as it seems and you might consider using fast modular multiplication.

The canonical representative of 15¹⁷ mod 2021 is _____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America