Lecture 1.1: Basic set theory

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

What is a set?

Almost everybody, regardless of mathematical background, has an intiutive idea of what a set is: a collection of objects, sometimes called elements.

Sets can be finite or infinite.

Examples of sets

1. Let S be the set consisting of 0 and 1 . We write $S=\{0,1\}$.
2. Let S be the set of words in the dictionary.
3. Let $S=\emptyset$, the "empty set".
4. Let $S=\{2, A$, cat, $\{0,1\}\}$.

Repeated elements in sets are not allowed. In other words, $\{1,2,3,3\}=\{1,2,3\}$. If we want to allow repeats, we can use a related object called a multiset.

Perhaps surprisingly, it is very difficult to formally define what a set is.
The problem is that some sets actually cannot exist!
For example, if we try to define the set of all sets, we will run into a problem called a paradox.

Russell's paradox

The following is called Russell's paradox, due to British philsopher, logician, and mathematician Bertrand Russell (1872-1970):

Suppose a town's barber shaves every man who doesn't shave himself.

Who shaves the barber?

Now, consider the set S of all sets which do not contain themselves.

Does S contain itself?

Later this class, we will encounter paradoxes that are not related to sets, but logical statements, such as:

This statement is false.

Set notation

We will usually denote a set by a capital letter.
If x is an element in A, we write $x \in A$. Otherwise, we write $x \notin A$.

Some commonly used sets

- \mathbb{N} : the natural numbers, $\{0,1,2,3, \ldots\}$
- \mathbb{Z} : the integers, $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- \mathbb{Q} : the rational numbers, $\{a / b \mid a, b \in \mathbb{Z}, b \neq 0\}$.
- \mathbb{R} : the real numbers

■ \mathbb{C} : the complex numbers, $\{a+b i \mid a, b \in \mathbb{R}\}$, where $i^{2}=-1$.
It should be clear what we mean by sets such as $\mathbb{Q} \geq 0$ and $\mathbb{R}_{\leq 0}$.
The vertical line, |, means "such that", or "where". We can also use a colon for this.
Commas are read as "and".
There are often multiple ways to describe a set, e.g.,

$$
\left\{x \in \mathbb{R} \mid x^{2}-5 x+6=0\right\}=\left\{x \mid x \in \mathbb{R}, x^{2}-5 x=-6\right\}=\{2,3\} .
$$

Set notation

A set is finite if it has a finite number of elements. Otherwise, it is an infinite set.
The number of elements in a set A is called its cardinality, denoted $|A|$. If A is infinite, we may write $|A|=\infty$.

We will see later than there are different infinite cardinalities.

Definition

Let A and B be sets. We say that A is a subset of B if (and only if) every element of A is an element of B. We write this as $A \subseteq B$, or $B \supseteq A$.

Warning!

Unfortunately, the notations $A \subset B$ and $A \subseteq B$ mean the same thing.
If we want to say that there are elements in B that are not in A, we can write $A \subsetneq B$. We say A is a proper subset of B, or that B is strictly larger than A.

Remark

The term if and only if means "is equivalent to saying".
Example. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.

Basic set operations

Definition

The intersection of sets A and B is the set of elements in both A and B, denoted

$$
A \cap B:=\{x \mid x \in A \text { and } x \in B\} .
$$

Two sets are disjoint if they have no elements in common, i.e., if $A \cap B=\emptyset$.
The union of sets A and B is the set of elements in either A or B, denoted

$$
A \cup B:=\{x \mid x \in A \text { or } x \in B\} .
$$

Examples

1. If $A=\{2,5,8\}$ and $B=\{7,5,22\}$, then $A \cap B=\{5\}$ and $A \cup B=\{2,5,8,7,22\}$.
2. $\mathbb{Z} \cup \mathbb{Q}=\mathbb{Q}$, and $\mathbb{Z} \cap \mathbb{Q}=\mathbb{Z}$.
3. $A \cup \emptyset=A$ for any set A.

Set complements

Frequently, we will need to establish the set of all elements U under consideration, which we call the universe.

Definition

The complement of a set A is the set of all elements in U that are not in A :

$$
A^{c}=\{x \in U \mid x \notin A\} .
$$

Example

Let $A=\mathbb{N}=\{0,1,2, \ldots\}$. What is the complement of A if the universe is:
(i) $U=\mathbb{Z}$,
(ii) $U=\mathbb{Q}$,
(iii) $U=\mathbb{R}$,
(iv) $U=\mathbb{C}$,
(v) $U=\mathbb{N}$.

Sometimes, the complement is denoted \bar{A}.

Relative complements

Definition

For sets A and B, the complement of A relative to B is the set of elements that are in B but not A :

$$
B-A=\{x \mid x \in B \text { and } x \notin A\} .
$$

The symmetric difference of A and B is the set of elements that are in one of these sets, but not the other:

$$
A \oplus B=(A-B) \cup(B-A)
$$

The complement of A relative to B can be denoted $A \backslash B$.

Exercises

Compute $A-B, B-A$, and $A \oplus B$ in the following cases:

1. $A=\{1,3,8\}$ and $B=\{2,4,8\}$
2. Any set A, and $B=\emptyset$.
3. $A=\mathbb{R}$ and $B=\mathbb{Q}$.

Venn diagrams
A useful way to visualize a small number of sets and their intersections, unions, and relative complements, is with a Venn diagram.

Social media has caused these to become mainstream, though they are often used incorrectly.

Cartesian products

Definition

The Cartesian product of sets A and B is the set of ordered pairs:

$$
A \times B=\{(a, b) \mid a \in A, b \in B\} .
$$

Examples

Let $A=\{1,2,3\}$ and $B=\{4,5\}$. Then

- $A \times B=$
- $B \times A=$
- $A \times A=$

Similarly, we can define the Cartesian product of three (or more) sets. For example,

$$
A \times B \times C=\{(a, b, c) \mid a \in A, b \in B, c \in C\} .
$$

It is common to use exponents if the sets are the same, e.g.,

$$
A^{2}=A \times A, \quad A^{3}=A \times A \times A, \ldots
$$

Power sets

Definition

The power set of A is the set of all subsets of A, denoted $\mathcal{P}(A)$. (Including both \emptyset and A.)

Examples

1. $\mathcal{P}(\emptyset)=\{\emptyset\}$
2. $\mathcal{P}(\{1\})=\{\emptyset,\{1\}\}$
3. $\mathcal{P}(\{1,2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\}$.

Do you see a pattern for how big $\mathcal{P}(A)$ will be if $|A|=n<\infty$?
How would you go about proving this?

Summation notation

Addition is a binary operation that is associative, which means that parentheses are permitted anywhere but required nowhere.

As such, we may write

$$
\left(\left(a_{1}+a_{2}\right)+a_{3}\right)+a_{4}=\left(a_{1}+a_{2}\right)+\left(a_{3}+a_{4}\right)=a_{1}+a_{2}+a_{3}+a_{4}=\sum_{k=1}^{4} a_{k},
$$

and the last term is called summation notation.
A finite series is an expression such as $a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}$. We say:

- the variable k is the index
- the expression a_{k} is the general term of the series
- the values below and above the summation symbol are the initial index and terminal index, respectively.

Another associative binary operation is multiplication. The product of elements a_{1}, \ldots, a_{n} is written in product notation, using a Π instead of a Σ :

$$
a_{1} a_{2} \cdots a_{n}=\prod_{k=1}^{n} a_{k} .
$$

Associative set operations

Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. Then:
(a) $A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}$
(b) $A_{1} \cup A_{2} \cup \cdots \cup A_{n}=\bigcup_{i=1}^{n} A_{i}$
(c) $A_{1} \times A_{2} \times \cdots \times A_{n}=\underset{i=1}{n} A_{i}$
(d) $A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}={\underset{i=1}{n} A_{i} .}_{\text {. }}$

Examples

For $A_{1}=\{0,2,3\}, A_{2}=\{1,2,3,6\}, A_{3}=\{-1,0,3,9\}$,
(a) $\stackrel{B}{i=1}_{3}^{3}=$
(b) $\bigcup_{i=1}^{3}=$
(c) $\underset{i=1}{\times}=$
(d) ${\underset{i=1}{3}}_{=}$

Distributive laws

See if you can find a general fomula for the following two expressions by looking at the cases where $n=2$ and drawing a Venn diagram:
$\boldsymbol{A} \cap\left(\bigcup_{i=1}^{n} B_{i}\right)=$
$\boldsymbol{A} \cup\left(\bigcap_{i=1}^{n} B_{i}\right)=$

