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Motivation

The number
(
n
k

)
is called a binomial coefficient, and counts the number of k-element

subsets of an n-element set.

The binomial coefficients satisfy a remarkable number of properties. In this lecture,
we will explore these, and generalize them to the multinomial coefficients.

As a teaser, the entries in Pascal’s triangle are actually binomial coefficients:
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A recursive identity for binomial coefficients

Theorem

The binomial coefficients satisfy the following recursive formula:(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
, for all n > 0 and 0 < k < n.

Proof 1 (algebraic)

Show that
n!

k!(n − k)!
=

(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − k − 1)!
. . . �

Proof 2 (combinatorial)

Let’s count, using two different methods, the number of ways to elect k candidates
from a pool of n.

For the second method, assume that there is one “distinguished” candidate. . .

�
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The binomial theorem

We will motivate the following theorem with an example:

(x + y)6 = x6 + 6x5y + 15x4y 2 + 20x3y 3 + 15x2y 4 + 6xy 5 + y 6

=
(

6
0

)
x6 +

(
6
1

)
x5y +

(
6
2

)
x4y 2 +

(
6
3

)
x3y 3 +

(
6
4

)
x2y 4 +

(
6
5

)
xy 5 +

(
6
6

)
y 6.

Theorem

For any x , y and n ≥ 1,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k .

Proof

Multiply out, or “FOIL” the product (x + y)(x + y) · · · (x + y)︸ ︷︷ ︸
n times

.

This results in 2n terms, all distinct length-n words in x and y . E.g., for n = 6:

xxxxxx + xxxxxy + · · ·+ xyxyxy + · · ·+ xxxyyy + · · ·+ yyyyyy

There are
(
n
k

)
words with exactly k instances of x , so this is the coefficient of xkyn−k .
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The binomial theorem

Corollary

The nth row of Pascal’s triangle sums to
n∑

k=0

(
n

k

)
= 2n.

Proof 1 (algebraic)

Take

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

and plug in x = y = 1. �

Proof 2 (combinatorial)

Let’s enumerate the power set of {1, . . . , n} of two different ways:

(i) Count the number of length-n binary strings

(ii) Count the number of size-k subsets, for k = 0, 1, . . . , n. �

A proof that establishes an identity by counting a carefully chosen set two different
ways is called a combinatorial proof.
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Multinomial coefficients

Exercise

A police department of 10 officers wants to have 5 patrol the streets, 2 doing
paperwork, and 3 at the dohnut shop. How many ways can this be done?

Answer:

(
10

5

)(
5

2

)(
3

3

)
=

10!

5! 5!
· 5!

2! 3!
· 3!

3! 0!
=

10!

5! 2! 3!
= 2520.

This is the same as counting the number of distinct permutations of the word

S S S S S P P D D D

Definition

Suppose that n1, . . . , nr are positive integers, and n1 + · · ·+ nr = n. Then(
n

n1, n2, . . . , nr

)
:=

n!

n1! n2! · · · nr !
=

(
n

n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)
· · ·

(
n −

r−i∑
i=1

ni

nr

)
is called a multinomial coefficient. Binomial coefficients are the special case of r = 2.
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Multinomials and words

Consider an alphabet with r letters: {s1, . . . , sr}.

The number of length-n “words” (i.e., strings) that you can write using exactly ni
instances of si (where n1 + · · ·+ nr = n) is(

n

n1, n2, . . . , nr

)
=

n!

n1! n2! · · · nr !
.

Examples

(i) The number of distinct permutations of the letters in the word MISSISSIPPI is(
11

1, 4, 4, 2

)
=

11!

1! 4! 4! 2!
= 34650.

(ii) How many length-13 strings can be made using 6 instances of * (“star”) and 7
instances of | (“bar”)? Examples include:

*||***||||**|, ******|||||||, |*|*|*|*|*|*|.

Answer:

(
13

6, 7

)
=

13!

6! 7!
=

(
13

6

)
= 1716.
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The multinomial theorem

Multinomial coefficients generalize binomial coefficients (the case when r = 2).

Not surprisingly, the Binomial Theorem generalizes to a Multinomial Theorem.

Theorem

For any x1, . . . , xr and n > 1,

(x1 + · · ·+ xr )
n =

∑
(n1,...,nr )

n1+···+nr =n

(
n

n1, n2, . . . , nr

)
xn1

1 xn2
2 · · · x

nr
r .
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