Lecture 1.4: Binomial and multinomial coefficients

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Motivation

The number $\binom{n}{k}$ is called a binomial coefficient, and counts the number of *k*-element subsets of an *n*-element set.

The binomial coefficients satisfy a remarkable number of properties. In this lecture, we will explore these, and generalize them to the multinomial coefficients.

As a teaser, the entries in Pascal's triangle are actually binomial coefficients:

		1										$\begin{pmatrix} 0\\0 \end{pmatrix}$										
				1		1						$\begin{pmatrix} 1\\ 0 \end{pmatrix}$ $\begin{pmatrix} 1\\ 1 \end{pmatrix}$										
			1		2		1								$\binom{2}{0}$		$\binom{2}{1}$		$\binom{2}{2}$			
		1		3		3		1						$\binom{3}{0}$		$\binom{3}{1}$		$\binom{3}{2}$		$\binom{3}{3}$		
	1		4		6		4		1				$\binom{4}{0}$		$\binom{4}{1}$		$\binom{4}{2}$		$\binom{4}{3}$		$\binom{4}{4}$	
1		5		10		10		5		1		$\binom{5}{0}$		$\binom{5}{1}$		$\binom{5}{2}$		$\binom{5}{3}$		$\binom{5}{4}$		$\binom{5}{5}$

A recursive identity for binomial coefficients

Theorem

The binomial coefficients satisfy the following recursive formula:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k},$$

for all n > 0 and 0 < k < n.

Proof 1 (algebraic)

Show that
$$\frac{n!}{k!(n-k)!} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} \dots$$

Proof 2 (combinatorial)

Let's count, using two different methods, the number of ways to elect k candidates from a pool of n.

For the second method, assume that there is one "distinguished" candidate...

The binomial theorem

We will motivate the following theorem with an example:

$$\begin{aligned} (x+y)^6 &= x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6 \\ &= \binom{6}{0}x^6 + \binom{6}{1}x^5y + \binom{6}{2}x^4y^2 + \binom{6}{3}x^3y^3 + \binom{6}{4}x^2y^4 + \binom{6}{5}xy^5 + \binom{6}{6}y^6. \end{aligned}$$

Theorem

For any x, y and $n \ge 1$,

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Proof

Multiply out, or "FOIL" the product
$$\underbrace{(x+y)(x+y)\cdots(x+y)}_{q \text{ times}}$$
.

This results in 2^n terms, all distinct length-*n* words in *x* and *y*. E.g., for n = 6:

$$xxxxxx + xxxxy + \dots + xyxyxy + \dots + xxxyyy + \dots + yyyyyy$$

There are $\binom{n}{k}$ words with exactly k instances of x, so this is the coefficient of $x^k y^{n-k}$.

The binomial theorem

Corollary

The *n*th row of Pascal's triangle sums to
$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$
.

Proof 1 (algebraic)

Take

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

and plug in x = y = 1.

Proof 2 (combinatorial)

Let's enumerate the power set of $\{1, \ldots, n\}$ of two different ways:

- (i) Count the number of length-*n* binary strings
- (ii) Count the number of size-k subsets, for k = 0, 1, ..., n.

A proof that establishes an identity by counting a carefully chosen set two different ways is called a combinatorial proof.

M. Macauley (Clemson)

Multinomial coefficients

Exercise

A police department of 10 officers wants to have 5 patrol the streets, 2 doing paperwork, and 3 at the dohnut shop. How many ways can this be done?

Answer:
$$\binom{10}{5}\binom{5}{2}\binom{3}{3} = \frac{10!}{5! 5!} \cdot \frac{5!}{2! 3!} \cdot \frac{3!}{3! 0!} = \frac{10!}{5! 2! 3!} = 2520.$$

This is the same as counting the number of distinct permutations of the word

S S S S S P P D D D

Definition

Suppose that n_1, \ldots, n_r are positive integers, and $n_1 + \cdots + n_r = n$. Then

$$\binom{n}{n_1, n_2, \ldots, n_r} := \frac{n!}{n_1! n_2! \cdots n_r!} = \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n-\sum_{i=1}^{r-r} n_i}{n_r}$$

is called a multinomial coefficient. Binomial coefficients are the special case of r = 2.

Multinomials and words

Consider an alphabet with *r* letters: $\{s_1, \ldots, s_r\}$.

The number of length-*n* "words" (i.e., strings) that you can write using exactly n_i instances of s_i (where $n_1 + \cdots + n_r = n$) is

$$\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Examples

(i) The number of distinct permutations of the letters in the word MISSISSIPPI is

$$\begin{pmatrix} 11\\ 1,4,4,2 \end{pmatrix} = \frac{11!}{1!\ 4!\ 4!\ 2!} = 34650.$$

 (ii) How many length-13 strings can be made using 6 instances of * ("star") and 7 instances of | ("bar")? Examples include:

Answer:
$$\begin{pmatrix} 13 \\ 6,7 \end{pmatrix} = \frac{13!}{6! \ 7!} = \begin{pmatrix} 13 \\ 6 \end{pmatrix} = 1716.$$

The multinomial theorem

Multinomial coefficients generalize binomial coefficients (the case when r = 2).

Not surprisingly, the Binomial Theorem generalizes to a Multinomial Theorem.

Theorem

For any x_1, \ldots, x_r and n > 1,

$$(x_1 + \cdots + x_r)^n = \sum_{\substack{(n_1, \ldots, n_r) \\ n_1 + \cdots + n_r = n}} {n \choose n_1, n_2, \ldots, n_r} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r}.$$