Lecture 1.4: Binomial and multinomial coefficients

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Motivation

The number $\binom{n}{k}$ is called a binomial coefficient, and counts the number of k-element subsets of an n-element set.

The binomial coefficients satisfy a remarkable number of properties. In this lecture, we will explore these, and generalize them to the multinomial coefficients.

As a teaser, the entries in Pascal's triangle are actually binomial coefficients:

A recursive identity for binomial coefficients

Theorem

The binomial coefficients satisfy the following recursive formula:

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}, \quad \text { for all } n>0 \text { and } 0<k<n
$$

Proof 1 (algebraic)

Show that $\frac{n!}{k!(n-k)!}=\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!} \cdots$

Proof 2 (combinatorial)

Let's count, using two different methods, the number of ways to elect k candidates from a pool of n.

For the second method, assume that there is one "distinguished" candidate. . .

The binomial theorem

We will motivate the following theorem with an example:

$$
\begin{aligned}
(x+y)^{6} & =x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{5}+y^{6} \\
& =\binom{6}{0} x^{6}+\binom{6}{1} x^{5} y+\binom{6}{2} x^{4} y^{2}+\binom{6}{3} x^{3} y^{3}+\binom{6}{4} x^{2} y^{4}+\binom{6}{5} x y^{5}+\binom{6}{6} y^{6} .
\end{aligned}
$$

Theorem

For any x, y and $n \geq 1$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

Proof

Multiply out, or "FOIL" the product $\underbrace{(x+y)(x+y) \cdots(x+y)}_{n \text { times }}$.
This results in 2^{n} terms, all distinct length n words in x and y. E.g., for $n=6$:

$$
x x x x x x+x x x x x y+\cdots+x y x y x y+\cdots+x x x y y y+\cdots+y y y y y y
$$

There are $\binom{n}{k}$ words with exactly k instances of x, so this is the coefficient of $x^{k} y^{n-k}$.

The binomial theorem

Corollary

The $n^{\text {th }}$ row of Pascal's triangle sums to $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

Proof 1 (algebraic)

Take

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

and plug in $x=y=1$.

Proof 2 (combinatorial)

Let's enumerate the power set of $\{1, \ldots, n\}$ of two different ways:
(i) Count the number of length- n binary strings
(ii) Count the number of size- k subsets, for $k=0,1, \ldots, n$.

A proof that establishes an identity by counting a carefully chosen set two different ways is called a combinatorial proof.

Multinomial coefficients

Exercise

A police department of 10 officers wants to have 5 patrol the streets, 2 doing paperwork, and 3 at the dohnut shop. How many ways can this be done?

Answer: $\binom{10}{5}\binom{5}{2}\binom{3}{3}=\frac{10!}{5!5!} \cdot \frac{5!}{2!3!} \cdot \frac{3!}{3!0!}=\frac{10!}{5!2!3!}=2520$.
This is the same as counting the number of distinct permutations of the word
S S S S S P P D D D

Definition

Suppose that n_{1}, \ldots, n_{r} are positive integers, and $n_{1}+\cdots+n_{r}=n$. Then

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}:=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}=\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}}\binom{n-n_{1}-n_{2}}{n_{3}} \cdots\binom{n-\sum_{i=1}^{r-i} n_{i}}{n_{r}}
$$

is called a multinomial coefficient. Binomial coefficients are the special case of $r=2$.

Multinomials and words

Consider an alphabet with r letters: $\left\{s_{1}, \ldots, s_{r}\right\}$.
The number of length-n "words" (i.e., strings) that you can write using exactly n_{i} instances of $s_{i}\left(\right.$ where $\left.n_{1}+\cdots+n_{r}=n\right)$ is

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

Examples

(i) The number of distinct permutations of the letters in the word MISSISSIPPI is

$$
\binom{11}{1,4,4,2}=\frac{11!}{1!4!4!2!}=34650
$$

(ii) How many length-13 strings can be made using 6 instances of * ("star") and 7 instances of I ("bar")? Examples include:

$$
|| * *||||* *|, \quad * * * * * *|||||||, \quad| *| *| *| *| *| * \mid .
$$

Answer: $\binom{13}{6,7}=\frac{13!}{6!7!}=\binom{13}{6}=1716$.

The multinomial theorem

Multinomial coefficients generalize binomial coefficients (the case when $r=2$).
Not surprisingly, the Binomial Theorem generalizes to a Multinomial Theorem.

Theorem

For any x_{1}, \ldots, x_{r} and $n>1$,

$$
\left(x_{1}+\cdots+x_{r}\right)^{n}=\sum_{\substack{\left(n_{1}, \ldots, n_{r}\right) \\ n_{1}+\cdots+n_{r}=n}}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}} .
$$

