Lecture 1.5: Multisets and multichoosing

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Overview

Consider an n-element set S. We can construct:

- lists from *S* (order matters)
- sets from *S* (order doesn't matter).

We can count:

■ lists of length k:

■
$$n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$
, if no repetitions allowed

• n^k , if repetitions are allowed.

sets of size *k*:

$$\left(\begin{matrix} n \\ k \end{matrix} \right) = \frac{n!}{k! \ (n-k)!}, \quad \text{if no repetitions allowed}$$

• ??? if repetitions are allowed.

In this lecture, we will answer this last part. A set with repetition is called a multiset.

Notation

Definition

Let $\binom{n}{k}$ be the number of k-element multisets on an n-element set.

```
We will write multisets as \langle \ldots \rangle, rather than \{\ldots\}.
```

Remark

Unlike for combinations, k could be larger than n.

Exercise

Let $S = \{a, b, c, d\}$.

- (i) How many 2-element sets can be formed from S?
- (ii) How many 2-element multisets can be formed from S?

Exercise (rephrased)

Let $S = \{a, b, c, d\}$.

- (i) How many ways can we choose 2 elements from S?
- (ii) How many ways can we multichoose 2 elements from S?

Counting multisets

Proposition

The number of k-element multisets on an n-element set is

$$\binom{n}{k} = \binom{n+k-1}{k}.$$

Proof

We will encode every multiset using "stars and bars notation."

Each * represents an element, and the | represents a "divider."

Counting multisets

Examples

- 1. You want to buy 3 hats and there are 5 colors: R, G, B, Y, O. How many possibilities are there?
- 2. You want to buy 5 hats and there are 3 colors: R, G, B, Y, O. How many possibilities are there?

Counting multisets

Examples

- 1. How many ways can you buy 6 sodas from a vending maching that has 8 flavors?
- 2. How many ways can you buy 7 sodas from a vending maching that has 7 flavors?

A multiset identity

Theorem

For any
$$n, k \ge 1$$
, we have $\binom{n}{k} = \binom{k-1}{n-1}$.

Proof 1 (algebraic)

Write
$$\binom{n}{k} = \binom{n+k-1}{k} = \binom{n+k-1}{n-1} = \binom{k+1}{n-1}$$
.

Proof 2 (combinatorial)

Switch the roles of bars and stars...

Summary

We can count various size-k collections of objects, from a "universe" of n objects.

	repetition allowed	no repetition allowed
Ordered (lists)	n ^k	$P(n,k) = \frac{n!}{(n-k)!}$
Unordered (sets, multisets)	$\left(\binom{n}{k} \right) = \binom{n+k-1}{k}$	$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$

Different ways to think about multisets (everyone has their favorite)

The quantity $\binom{n}{k}$ counts:

- the number of ways to put *n* identical balls into buckets B_1, \ldots, B_n .
- the number of ways to distribute *k* candy bars to *n* people.
- the number of ways to buy k sodas from a vending machine with n varieties.
- the number of ways to choose k scoops of ice cream from n flavors.
- The number of nonnegative integer solutions to $x_1 + x_2 + \cdots + x_n = k$.
- The number of positive integer sequences *a*₁, *a*₂,..., *a*_k where
 - $1 \leq a_1 \leq a_2 \leq \cdots \leq a_k \leq n.$

Combinatorial proofs: counting things different ways

Sometimes, there are different ways to count the same set of objects.

This can lead to two different formulas that are actually the same; a "*combinatorial identity*."

Verifing an identity by counting a set two different ways is a combinatorial proof, the topic of the next lecture.

But first, we'll see an example of this involving multisets.

Combinatorial proofs: counting things different ways

Example

You have 11 Biographies and 8 Mysteries that you want to arrange on your bookshelf, but no two mysteries can be adjacent to each other. How many different rearrangements are possible?