Lecture 1.5: Multisets and multichoosing

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Overview

Consider an n-element set S. We can construct:

- lists from S (order matters)
- sets from S (order doesn't matter).

We can count:

- lists of length k :
- $n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}, \quad$ if no repetitions allowed
- n^{k}, if repetitions are allowed.
- sets of size k :
- $\binom{n}{k}=\frac{n!}{k!(n-k)!}, \quad$ if no repetitions allowed
- ??? if repetitions are allowed.

In this lecture, we will answer this last part. A set with repetition is called a multiset.

Notation

Definition

Let $\binom{n}{k}$) be the number of k-element multisets on an n-element set.
We will write multisets as $\langle\ldots\rangle$, rather than $\{\ldots\}$.

Remark

Unlike for combinations, k could be larger than n.

Exercise

Let $S=\{a, b, c, d\}$.
(i) How many 2-element sets can be formed from S ?
(ii) How many 2 -element multisets can be formed from S ?

Exercise (rephrased)

Let $S=\{a, b, c, d\}$.
(i) How many ways can we choose 2 elements from S ?
(ii) How many ways can we multichoose 2 elements from S ?

Counting multisets

Proposition
The number of k-element multisets on an n-element set is $\left(\binom{n}{k}\right)=\binom{n+k-1}{k}$.

Proof

We will encode every multiset using "stars and bars notation."
Each * represents an element, and the | represents a "divider."

Counting multisets

Examples

1. You want to buy 3 hats and there are 5 colors: R, G, B, Y, O. How many possibilities are there?
2. You want to buy 5 hats and there are 3 colors: R, G, B, Y, O. How many possibilities are there?

Counting multisets

Examples

1. How many ways can you buy 6 sodas from a vending maching that has 8 flavors?
2. How many ways can you buy 7 sodas from a vending maching that has 7 flavors?

A multiset identity
Theorem
For any $n, k \geq 1$, we have $\left(\binom{n}{k}\right)=\left(\binom{k-1}{n-1}\right)$.

Proof 1 (algebraic)
Write $\left(\binom{n}{k}\right)=\binom{n+k-1}{k}=\binom{n+k-1}{n-1}=\left(\binom{k+1}{n-1}\right)$.

Proof 2 (combinatorial)

Switch the roles of bars and stars...

Summary

We can count various size- k collections of objects, from a "universe" of n objects.

	repetition allowed	no repetition allowed
Ordered (lists)	n^{k}	$P(n, k)=\frac{n!}{(n-k)!}$
Unordered (sets, multisets)	$\left(\binom{n}{k}\right)=\binom{n+k-1}{k}$	$C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Different ways to think about multisets (everyone has their favorite)

The quantity $\left.\binom{n}{k}\right)$ counts:

- the number of ways to put n identical balls into buckets B_{1}, \ldots, B_{n}.
- the number of ways to distribute k candy bars to n people.
- the number of ways to buy k sodas from a vending machine with n varieties.
- the number of ways to choose k scoops of ice cream from n flavors.
- The number of nonnegative integer solutions to $x_{1}+x_{2}+\cdots+x_{n}=k$.
- The number of positive integer sequences $a_{1}, a_{2}, \ldots, a_{k}$ where $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq n$.

Combinatorial proofs: counting things different ways

Sometimes, there are different ways to count the same set of objects.
This can lead to two different formulas that are actually the same; a "combinatorial identity."

Verifing an identity by counting a set two different ways is a combinatorial proof, the topic of the next lecture.

But first, we'll see an example of this involving multisets.

Combinatorial proofs: counting things different ways

Example

You have 11 Biographies and 8 Mysteries that you want to arrange on your bookshelf, but no two mysteries can be adjacent to each other. How many different rearrangements are possible?

