Lecture 1.6: Combinatorial proofs

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Overview

Recall that the technique of proving a combinatorial identity by carefully counting a set two distinct ways is called a combinatorial proof.

We have a seen a few of these. In this lecture, we will recall those, and then see some new ones. We'll start with an easy one.

Proposition

For $0 \leq k \leq n$,

$$
n!=\binom{n}{k} k!(n-k)!.
$$

Proof

How many different orderings of the numbers $1, \ldots, n$ are possible?

Examples of combinatorial proofs

Proposition

For $0 \leq k \leq n$,

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Proof

How many ways can we choose k people from a group of n ?

Examples of combinatorial proofs

Proposition

For $k, n \geq 0$,

$$
\left(\binom{n}{k}\right)=\binom{n+k-1}{k} .
$$

Proof

How may ways can we choose k-elements from a set of n, if repetitions are allowed?

Examples of combinatorial proofs

Proposition

For $0 \leq k \leq n$,

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n} .
$$

Proof

How many subsets of an n-element set are there?

Examples of combinatorial proofs

Theorem

For any $x, y \in \mathbb{N}$ and $n \geq 1$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

Proof

In a class with n students, each student must solve one homework problem. There are x calculus problems and y combinatorics problems to choose from. How many different possible outcomes are there?

Examples of combinatorial proofs

Proposition

For $0 \leq k \leq n$,

$$
\sum_{k=0}^{n}\binom{n}{2 k}=2^{n-1} .
$$

Proof

How many ways can we select an even number of people from a group of n ?

Examples of combinatorial proofs

Proposition

For $0 \leq k \leq n$,

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

Proof

How many ways can we select a committee of k people from a group of n, with one designated chair?

Examples of combinatorial proofs

Proposition

For $0 \leq m \leq k \leq n$,

$$
\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{k-m}
$$

Proof

Given a group of n people, how many ways can we choose a size- k committee and a size- m subcommittee?

Examples of combinatorial proofs
Vandermonde's identity
For $0 \leq m \leq k \leq n$,

$$
\binom{m+n}{k}=\sum_{j=0}^{k}\binom{m}{j}\binom{n}{k-j} .
$$

Proof

How many ways can we select a size- k committee from a group of m men and n women?

