Lecture 2.2: Tautology and contradiction

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Motivation

Digital electronic circuits are made from large collections of logic gates, which are physical devices that implement Boolean functions.

AND Logic Gate

Truth Table

Figure: Image by user EICC on Vimeo, under a Creative Commons license.

Motivation

Digital electronic circuits are made from large collections of logic gates, which are physical devices that implement Boolean functions.

OR Logic Gate

A

Boolean Expression

$$
A+B=Y
$$

Truth Table

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

Figure: Image by user EICC on Vimeo, under a Creative Commons license.

Motivation

Understanding digital circuits requires an understanding of Boolean logic.
Recall that we have seen the following logical operations:

p	q	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$q \rightarrow p$	$\neg q \rightarrow \neg p$	$p \leftrightarrow q$
0	0	0	0	1	1	1	1
0	1	0	1	1	0	1	0
1	0	0	1	0	1	0	0
1	1	1	1	1	1	1	1

Note that:
$■ p \rightarrow q$ has the same truth table as $(\neg p \wedge \neg q) \vee(\neg p \wedge q) \vee(p \wedge q)$, or just $\neg p \vee q$.
$■ q \rightarrow p$ has the same truth table as $(\neg p \wedge \neg q) \vee(p \wedge \neg q) \vee(p \wedge q)$, or just $p \vee \neg q$.
$\square p \leftrightarrow q$ has the same truth table as $(\neg p \wedge \neg q) \vee(p \wedge q)$.
Not surprisingly, every Boolean function can be written with \wedge, \vee, and \neg.
Even with just these operations, many propositions are the same. For example, $\neg(p \wedge q)$ and $\neg p \vee \neg q$ have the same meaning.

Compound propositions

If p, q, and r are propositions, we say that the compound proposition

$$
c=(p \wedge q) \vee(\neg q \wedge r)
$$

is generated by p, q, and r.
The value of c is determined by the $2^{3}=8$ possibile combinations of truth values for p, q, and r. We can describe this via a truth table:

p	q	r	$p \wedge q$	$\neg q$	$\neg q \wedge r$	$(p \wedge q) \vee(\neg q \wedge r)$
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Note that the first three colums are the numbers $0, \ldots, 7$ in binary.
In general, if c is generated by n propositions, then its truth table will have 2^{n} rows.

Compound propositions

Let S be any set of propositions. A proposition generated by S is any valid combination of propositions in S with conjunction, disjunction, and negation.

Definition (formal)

(a) If $p \in S$, then p is a proposition generated by S, and
(b) If x and y are propositions generated by S, then so are (x), $\neg x, x \vee y$, and $x \wedge y$.

There is a standard "order of operations":

1. Negation: \neg
2. Conjunction: \wedge
3. Disjunction: \vee
4. Conditional operation: \rightarrow
5. Biconditional operation: \leftrightarrow

Despite this, we will avoid writing potentially ambiguous statements like $p \vee q \wedge r$. Expressions like the following should be unambiguous:
(a) $p \wedge q \wedge r$ is $(p \wedge q) \wedge r$
(b) $\neg p \vee \neg r$ is $(\neg p) \vee(\neg r)$
(c) $\neg \neg p$ is $\neg(\neg p)$.

Tautologies

Definition

An expression involving logical variables that is true in all cases is a tautology. We use the number 1 to symbolize a tautology.

Examples

The following are all tautologies:
(a) $(\neg(p \wedge q)) \leftrightarrow(\neg p \vee \neg q)$
(b) $p \vee \neg p$
(c) $(p \wedge q) \rightarrow p$
(d) $q \rightarrow(p \vee q)$
(e) $(p \vee q) \leftrightarrow(q \vee p)$

Contradictions

Definition

An expression involving logical variables that is false in all cases is a contradiction. We use the number 0 to symbolize a contradiction.

Examples

The following are contradictions:
(a) $p \wedge \neg p$
(b) $(p \vee q) \wedge(\neg p) \wedge(\neg q)$

