Lecture 2.6: Propositions over a universe

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Propositions over a universe

Definition

Let U be a nonempty set. A proposition over U is a sentence that contains a variable that can take on any value in U and that has a definite truth value as a result of any such substitution. We may write p(u) to denote "the truth value of p when we substitute in u."

Examples

Over the integers:

- $x^2 \ge 0$ (always true; a "tautology")
- $x \ge 0$ (sometimes true)
- $x^2 < 0$ (never true; a "contradiction")

Over the rational numbers:

•
$$(s-1)(s+1) = s^2 - 1$$
 (tautology)

•
$$4x^2 - 3x = 0$$

• $y^2 = 2$ (contradiction)

Over the power set 2^S for a fixed set S:

• $(A \neq \emptyset) \lor (A = S)$

 $\bullet A \cap \{1,2,3\} \neq \emptyset.$

Propositions over a universe

All of the laws of logic that we've seen are valid for propositions over a universe.

For example, if p and q are propositions over \mathbb{Z} , then $p \land q \Rightarrow q$ because $(p \land q) \rightarrow q$ is a tautology, no matter what values we substitute for p and q.

Over \mathbb{N} , let p(n) be true if n < 44, and q(n) be true if n < 16, i.e.,

p(n): n < 44 and q(n): n < 16.

Note that in this case, $q \Rightarrow p \land q$.

Definition

If p is a proposition over U, then truth set of p is

 $T_p = \{a \in U \mid p(a) \text{ is true}\}.$

When p is an equation, we often use the term solution set.

Examples

- Let $S = \{1, 2, 3, 4\}$ and $U = 2^{S}$. The truth set of the proposition $\{1, 2\} \cap A = \emptyset$ over U is $\{\emptyset, \{3\}, \{4\}, \{3, 4\}\}$.
- Over \mathbb{Z} , the truth (solution) set of $4x^2 3x = 0$ is $\{0\}$.
- Over \mathbb{Q} , the solution set of $4x^2 3x = 0$ is $\{0, 3/4\}$.

Compound statements

The truth sets of compound propositions can be expressed in terms of the truthsets of simple propositions.

For example:

 $a \in T_{p \wedge q}$ iff *a* makes $p \wedge q$ true iff *a* makes both *p* and *q* true iff $a \in T_p \cap T_q$.

Truth sets of compound statements

$$T_{p \wedge q} = T_p \cap T_q$$

$$T_{p \vee q} = T_p \cup T_q$$

$$T_{\neg p} = T_p^c$$

$$T_{p \leftrightarrow q} = (T_p \cap T_q) \cup (T_p^c \cap T_q^c)$$

$$T_{p \rightarrow q} = T_p^c \cup T_q$$

Equivalence over U

Definition

Two propositions p and q are equivalent over U if $p \leftrightarrow q$ is a tautology. Equivalently, this means that $T_p = T_q$.

Examples

- $x^2 = 4$ and x = 2 are equivalent over \mathbb{N} , but non-equivalent over \mathbb{Z} .
- $A \cap \{4\} \neq \emptyset$ and $4 \in A$ are equivalent propositions over the power set $2^{\mathbb{N}}$.

We can even relax the condition that the universe U is a set.

For example, consider the universe U of *all sets*. (Not a set!)

Over U, the propositions

$$p(A, B) : A \subseteq B$$
 and $q(A, B) : A \cap B = A$

are equivalent.

Implication over U

Definition

If p and q are propositions over U, then p implies q if $p \rightarrow q$ is a tautology.

Examples

- Over the natural numbers: $n \le 16 \Rightarrow n \le 44$, because $\{0, 1, \dots, 16\} \subseteq \{0, 1, \dots, 44\}$.
- Over the power set $2^{\mathbb{Z}}$: $|A^c| = 1$ implies $A \cap \{0, 1\} \neq \emptyset$.
- Over $2^{\mathbb{Z}}$: $A \subseteq$ even integers $\Rightarrow A \cap$ odd integers $= \emptyset$.