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The existential quantifier

If p(n) is a proposition over a universe U, its truth set Tp is a subset of U.

In many cases, such as when p(n) is an equation, we are often concerned with two special
cases:

Tp 6= ∅: “p(n) is true for some n,”

Tp = U: “p(n) is true for all n.”

The existential quantifier

If p(n) is a proposition over U with Tp 6= ∅, we say

“there exists an n ∈ U such that p(n) (is true).”

We write this as (∃n)U(p(n)).

The symbol ∃ is the existential quantifier. If the context is clear, we can just say (∃n)(p(n)).

If Tp = ∅, i.e., if (∃n)(p(n)) is false, then we can write ( 6 ∃n)U(p(n)).

“there does not exist n ∈ U such that p(n) is true.”

M. Macauley (Clemson) Lecture 2.7: Quantifiers Discrete Mathematical Structures 2 / 9

mailto:macaule@clemson.edu


The existential quantifier

Examples

1. (∃k)Z(k2 − k − 12 = 0) says that there is an integer solution to k2 − k − 12 = 0.

2. (∃k)Z(3k = 102) says that 102 is a multiple of 3.

3. The statement (∃k)Z(3k = 100) is false, but (6 ∃k)Z(3k = 100) is true.

4. Since the solution set to x2 + 1 = 0 is {i ,−i}, we can say

( 6 ∃x)R(x2 + 1 = 0), (∃x)C(x2 + 1 = 0).
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The universal quantifier

Definition

If p(n) is a proposition over U with Tp = U, we say

“for all n ∈ U, p(n) (is true)”

We write this as (∀n)U(p(n)).

The symbol ∀ is the universal quantifier. If the context is clear, we can write (∀n)U(p(n)).

Unlike the symbol 6 ∃ for “there does not exist”, the notation 6 ∀ is not used. (Why?)

Examples

1. We can use a universal quantifier to say that the square of every real number is
non-negative: (∀x)R(x2 ≥ 0).

2. (∀n)Z(n + 0 = 0 + n = n) is the identity property of zero for addition, over the integers.

Universal quantifier Existential quantifier
(∀n)U(p(n)) (∃n)U(p(n))

(∀n ∈ U)(p(n)) (∃n ∈ U)(p(n))

∀n ∈ U, p(n) ∃n ∈ U such that p(n)

p(n), ∀n ∈ U p(n), for some n ∈ U

p(n) is true for all n ∈ U p(n) is true for some n ∈ U
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The negation of quantified propositions

Motivating example

Over the universe of animals, define

F (x): x is a fish, W (x): x lives in water.

The proposition W (x)→ F (x) is not always true.

In other words: (∀x)(W (x)→ F (x)) is false.

Equivalently, there exists an animal that lives in the water and is not a fish. That is,

¬
(

(∀x)(W (x)→ F (x))
)
⇔ (∃x)

(
¬(W (x)→ F (x))

)
⇔ (∃x)(W (x) ∧ ¬F (x)).

Big idea

The negation of a universally quantified proposition is an existentially quantified proposition:

¬
(

(∀n)U(p(n))
)
⇔ (∃n)U(¬p(n)).

The negation of an existentially quantified proposition is a universally quantified proposition:

¬
(

(∃n)U(p(n))
)
⇔ (∀n)U(¬p(n)).
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The negation of quantified propositions

More examples

1. The ancient Greeks discovered that
√

2 is irrational. Two ways to state this symbolically
are:

¬
(

(∃r)Q(r2 = 2)
)
, and (∀r)Q(r2 6= 2).

2. The following equivalent propositions are either both true or both false:

¬
(

(∀n)(n2 − n + 41 is composite)
)

⇔ (∃n)(n2 − n + 41 is prime)
)
.
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Multiple quantifiers (of one type)

Propositions with multiple variables can be quantified multiple times. For example, the
proposition

p(x , y) : x2 − y2 = (x + y)(x − y)

is a tautology over the real numbers.

Here are three ways to write this with universal quantifiers:

(∀(x , y))R×R(p(x , y)), (∀x)R
(

(∀y)R(p(x , y))
)
, (∀y)R

(
(∀x)R(p(x , y))

)
.

Consider the proposition over R× R

q(x , y) : x − y = 1 and y = x2 − 1

which has solution set Tq = {(0,−1), (1, 0)}.

Here are three ways to write this with universal quantifiers:

(∃(x , y))R×R(q(x , y)), (∃x)R
(

(∃y)R(q(x , y))
)
, (∃y)R

(
(∃x)R(q(x , y))

)
.

Rule of thumb

Quantifiers of the same type can by arranged in any order without logically changing the
meaning of the proposition.
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Negating multiple quantifiers (of one type)

For another example, consider the following proposition which is always false:

p(x , y) : x + y = 1 and x + y = 2.

We can express this us by negating a proposition involving existential quantifiers:

¬
(

(∃x)R
(
(∃y)R(p(x , y))

))
⇔ ¬

(
(∃y)R

(
(∃x)R(p(x , y))

))
⇔ (∀y)R

(
¬
(
(∃x)R(p(x , y))

))
⇔

(
∀y)R

(
(∀x)R(¬p(x , y))

)
⇔ (∀x)R

(
(∀y)R(¬p(x , y))

)
.
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Multiple quantifiers (mixed)

When existential and universal quantifiers are mixed, the order cannot be changed without
possibly logically changing the meaning.

For example, the following two propositions are different:

p : (∀a)R+

(
(∃b)R+ (ab = 1)

)
, q : (∃b)R+

(
(∀a)R+ (ab = 1)

)
.

Note that p is true, but q is false.

One way to see why q is false is to verify that ¬q is true:

¬
(

(∃b)R+

(
(∀a)R+ (ab = 1)

))
⇔ (∀b)R+¬

(
(∀a)R+ (ab = 1)

)
⇔ (∀b)R+

(
(∃a)R+ (ab 6= 1)

)
.

Sometimes, we get “lucky” and changing the order does not change the logical meaning, but
that is rare. One example:

p : (∀a)R
(

(∃b)R+ (ab = 0)
)
, q : (∃b)R

(
(∀a)R+ (ab = 0)

)
.
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