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The existential quantifier

If p(n) is a proposition over a universe U, its truth set T, is a subset of U.

In many cases, such as when p(n) is an equation, we are often concerned with two special
cases:

m T, #0: “p(n) is true for some n,”

m T, =U: “p(n)is true for all n.”

The existential quantifier
If p(n) is a proposition over U with T, # (), we say

“there exists an n € U such that p(n) (is true).”
We write this as (3n)y(p(n)).

The symbol 3 is the existential quantifier. If the context is clear, we can just say (3n)(p(n)).

If T, =0, i.e., if (3n)(p(n)) is false, then we can write ( An)y(p(n)).

“there does not exist n € U such that p(n) is true.”
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The existential quantifier
Examples
1. (3k)z(k? — k — 12 = 0) says that there is an integer solution to k> — k — 12 = 0.
2. (3k)z(3k = 102) says that 102 is a multiple of 3.
3. The statement (3k)z(3k = 100) is false, but ( Ak)z(3k = 100) is true.

4. Since the solution set to x?> +1 = 0 is {i, —i}, we can say

(Ar(x* +1=0), (3)c(2 +1=0).
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The universal quantifier
Definition
If p(n) is a proposition over U with T, = U, we say
“for all n € U, p(n) (is true)’
We write this as (Vn)y(p(n)).

The symbol V is the universal quantifier. If the context is clear, we can write (Vn)y(p(n)).

Unlike the symbol A for “there does not exist”, the notation X is not used. (Why?)

Examples

1. We can use a universal quantifier to say that the square of every real number is
non-negative: (Vx)r(x? > 0).

2. (Vn)z(n+0 =0+ n = n) is the identity property of zero for addition, over the integers.

Universal quantifier Existential quantifier
(Vn)u(p(n)) (3n)u(p(n))
(Vn € U)(p(m) (3n € U)(p(n))
Vn e U, p(n) 3n € U such that p(n)
p(n), Vne U p(n), for some ne€ U
p(n) is true for all n€ U p(n) is true for some n € U
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The negation of quantified propositions

Motivating example

Over the universe of animals, define
F(x): xis a fish, W(x): x lives in water.
The proposition W/(x) — F(x) is not always true.

In other words: (Vx)(W/(x) — F(x)) is false.

Equivalently, there exists an animal that lives in the water and is not a fish. That is,

(W (x) = F(x)) & (30 (~(W(x) = F(x))
& (3x)(W(x) A ~F(x)).

Big idea

The negation of a universally quantified proposition is an existentially quantified proposition:

~((Wnu(p(n) & En)u(=p(n)).
The negation of an existentially quantified proposition is a universally quantified proposition:

~(@nu(pn)) & (¥m)u(=p(n).

o’

M. Macauley (Clemson) Lecture 2.7: Quantifiers Discrete Mathematical Structures 5/9


mailto:macaule@clemson.edu

The negation of quantified propositions

More examples

1. The ancient Greeks discovered that v/2 is irrational. Two ways to state this symbolically

e ﬁ((ar)Q(rZ = 2)), and  (Vr)o(r? #2).

2. The following equivalent propositions are either both true or both false:

ﬂ((Vn)(n2 —n+4lis composite)) & (3n)(n®* —n+4lis prime)).
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Multiple quantifiers (of one type)

Propositions with multiple variables can be quantified multiple times. For example, the
proposition
2 2
px,y)  x"—y" = (x+y)(x—y)

is a tautology over the real numbers.

Here are three ways to write this with universal quantifiers:

(Yoo exr(p(x ), ()2 ((We(p(y),  (W)a((9)=(p(x,1))).
Consider the proposition over R x R
qg(x,y) :x—y=1landy=x>—1
which has solution set Ty = {(0,—1),(1,0)}.

Here are three ways to write this with universal quantifiers:

Gl exa(atoy),  (3x(@raxy),  Ge(Goraxy)).

Rule of thumb

Quantifiers of the same type can by arranged in any order without logically changing the
meaning of the proposition.
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Negating multiple quantifiers (of one type)
For another example, consider the following proposition which is always false:
p(x,y)ix+y=1land x+y=2.

We can express this us by negating a proposition involving existential quantifiers:

(@@= ) & =(@E=(E)(p(x: )
& (W) (~((F=(p(x. )
& (V)R ((vX)r(—p(x, ¥)))
& (V)& ((Vy)r(=p(x,¥)))-
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Multiple quantifiers (mixed)

When existential and universal quantifiers are mixed, the order cannot be changed without
possibly logically changing the meaning.

For example, the following two propositions are different:
p: (Va)us ((3b)p+ (ab=1)), q: (3b)gs ((Va)s (ab = 1)).
Note that p is true, but q is false.
One way to see why q is false is to verify that —q is true:
~((3B)e+ (Va)g(ab = 1)) ) & (vb)a~((Va)gs (ab = 1))
& (Vb)p+ ((EIa)R+(ab + 1)).

Sometimes, we get “lucky
that is rare. One example:

and changing the order does not change the logical meaning, but

p: (va)e ((Bb)g: (ab = 0)), q: (3b)z ((Va)z+ (ab = 0)).
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