# Lecture 2.7: Quantifiers 

Matthew Macauley<br>Department of Mathematical Sciences<br>Clemson University<br>http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

## The existential quantifier

If $p(n)$ is a proposition over a universe $U$, its truth set $T_{p}$ is a subset of $U$.
In many cases, such as when $p(n)$ is an equation, we are often concerned with two special cases:

- $T_{p} \neq \emptyset: \quad$ " $p(n)$ is true for some $n$,"
- $T_{p}=U: \quad$ " $p(n)$ is true for all $n . "$


## The existential quantifier

If $p(n)$ is a proposition over $U$ with $T_{p} \neq \emptyset$, we say
"there exists an $n \in U$ such that $p(n)$ (is true)."
We write this as $(\exists n) \cup(p(n))$.
The symbol $\exists$ is the existential quantifier. If the context is clear, we can just say $(\exists n)(p(n))$.

If $T_{p}=\emptyset$, i.e., if $(\exists n)(p(n))$ is false, then we can write $(\nexists n) \cup(p(n))$.
"there does not exist $n \in U$ such that $p(n)$ is true."

## The existential quantifier

## Examples

1. $(\exists k)_{\mathbb{Z}}\left(k^{2}-k-12=0\right)$ says that there is an integer solution to $k^{2}-k-12=0$.
2. $(\exists k)_{\mathbb{Z}}(3 k=102)$ says that 102 is a multiple of 3 .
3. The statement $(\exists k)_{\mathbb{Z}}(3 k=100)$ is false, but $(\nexists k)_{\mathbb{Z}}(3 k=100)$ is true.
4. Since the solution set to $x^{2}+1=0$ is $\{i,-i\}$, we can say

$$
(\nexists x)_{\mathbb{R}}\left(x^{2}+1=0\right), \quad(\exists x)_{\mathbb{C}}\left(x^{2}+1=0\right)
$$

## The universal quantifier

## Definition

If $p(n)$ is a proposition over $U$ with $T_{p}=U$, we say

$$
\text { "for all } n \in U, p(n) \text { (is true)" }
$$

We write this as $(\forall n)_{U}(p(n))$.
The symbol $\forall$ is the universal quantifier. If the context is clear, we can write $(\forall n) u(p(n))$.

Unlike the symbol $\nexists$ for "there does not exist", the notation $\not \subset$ is not used. (Why?)

## Examples

1. We can use a universal quantifier to say that the square of every real number is non-negative: $(\forall x)_{\mathbb{R}}\left(x^{2} \geq 0\right)$.
2. $(\forall n)_{\mathbb{Z}}(n+0=0+n=n)$ is the identity property of zero for addition, over the integers.

Universal quantifier
$(\forall n) U(p(n))$
$(\forall n \in U)(p(n))$
$\forall n \in U, p(n)$
$p(n), \forall n \in U$
$p(n)$ is true for all $n \in U$

Existential quantifier

$$
(\exists n)_{U}(p(n))
$$

$$
(\exists n \in U)(p(n))
$$

$\exists n \in U$ such that $p(n)$
$p(n)$, for some $n \in U$
$p(n)$ is true for some $n \in U$

## The negation of quantified propositions

## Motivating example

Over the universe of animals, define

$$
F(x): x \text { is a fish, } \quad W(x): x \text { lives in water. }
$$

The proposition $W(x) \rightarrow F(x)$ is not always true.
In other words: $(\forall x)(W(x) \rightarrow F(x))$ is false.
Equivalently, there exists an animal that lives in the water and is not a fish. That is,

$$
\begin{aligned}
\neg((\forall x)(W(x) \rightarrow F(x))) & \Leftrightarrow(\exists x)(\neg(W(x) \rightarrow F(x))) \\
& \Leftrightarrow(\exists x)(W(x) \wedge \neg F(x)) .
\end{aligned}
$$

## Big idea

The negation of a universally quantified proposition is an existentially quantified proposition:

$$
\neg\left((\forall n)_{U}(p(n))\right) \Leftrightarrow(\exists n)_{U}(\neg p(n))
$$

The negation of an existentially quantified proposition is a universally quantified proposition:

$$
\neg\left((\exists n)_{U}(p(n))\right) \Leftrightarrow(\forall n)_{U}(\neg p(n))
$$

## The negation of quantified propositions

## More examples

1. The ancient Greeks discovered that $\sqrt{2}$ is irrational. Two ways to state this symbolically are:

$$
\neg\left((\exists r)_{\mathbb{Q}}\left(r^{2}=2\right)\right), \quad \text { and } \quad(\forall r)_{\mathbb{Q}}\left(r^{2} \neq 2\right) \text {. }
$$

2. The following equivalent propositions are either both true or both false:

$$
\left.\neg\left((\forall n)\left(n^{2}-n+41 \text { is composite }\right)\right) \quad \Leftrightarrow \quad(\exists n)\left(n^{2}-n+41 \text { is prime }\right)\right) .
$$

## Multiple quantifiers (of one type)

Propositions with multiple variables can be quantified multiple times. For example, the proposition

$$
p(x, y): x^{2}-y^{2}=(x+y)(x-y)
$$

is a tautology over the real numbers.
Here are three ways to write this with universal quantifiers:

$$
(\forall(x, y))_{\mathbb{R} \times \mathbb{R}}(p(x, y)), \quad(\forall x)_{\mathbb{R}}\left((\forall y)_{\mathbb{R}}(p(x, y))\right), \quad(\forall y)_{\mathbb{R}}\left((\forall x)_{\mathbb{R}}(p(x, y))\right)
$$

Consider the proposition over $\mathbb{R} \times \mathbb{R}$

$$
q(x, y): x-y=1 \text { and } y=x^{2}-1
$$

which has solution set $T_{q}=\{(0,-1),(1,0)\}$.
Here are three ways to write this with universal quantifiers:

$$
(\exists(x, y))_{\mathbb{R} \times \mathbb{R}}(q(x, y)), \quad(\exists x)_{\mathbb{R}}\left((\exists y)_{\mathbb{R}}(q(x, y))\right), \quad(\exists y)_{\mathbb{R}}\left((\exists x)_{\mathbb{R}}(q(x, y))\right)
$$

## Rule of thumb

Quantifiers of the same type can by arranged in any order without logically changing the meaning of the proposition.

## Negating multiple quantifiers (of one type)

For another example, consider the following proposition which is always false:

$$
p(x, y): x+y=1 \text { and } x+y=2
$$

We can express this us by negating a proposition involving existential quantifiers:

$$
\begin{aligned}
\neg\left((\exists x)_{\mathbb{R}}\left((\exists y)_{\mathbb{R}}(p(x, y))\right)\right) & \Leftrightarrow \neg\left((\exists y)_{\mathbb{R}}\left((\exists x)_{\mathbb{R}}(p(x, y))\right)\right) \\
& \Leftrightarrow(\forall y)_{\mathbb{R}}\left(\neg\left((\exists x)_{\mathbb{R}}(p(x, y))\right)\right) \\
& \Leftrightarrow(\forall y)_{\mathbb{R}}\left((\forall x)_{\mathbb{R}}(\neg p(x, y))\right) \\
& \Leftrightarrow(\forall x)_{\mathbb{R}}\left((\forall y)_{\mathbb{R}}(\neg p(x, y))\right) .
\end{aligned}
$$

## Multiple quantifiers (mixed)

When existential and universal quantifiers are mixed, the order cannot be changed without possibly logically changing the meaning.

For example, the following two propositions are different:

$$
p:(\forall a)_{\mathbb{R}^{+}}\left((\exists b)_{\mathbb{R}^{+}}(a b=1)\right), \quad q:(\exists b)_{\mathbb{R}^{+}}\left((\forall a)_{\mathbb{R}^{+}}(a b=1)\right)
$$

Note that $p$ is true, but $q$ is false.
One way to see why $q$ is false is to verify that $\neg q$ is true:

$$
\begin{aligned}
\neg\left((\exists b)_{\mathbb{R}^{+}}\left((\forall a)_{\mathbb{R}^{+}}(a b=1)\right)\right) & \Leftrightarrow(\forall b)_{\mathbb{R}^{+}} \neg\left((\forall a)_{\mathbb{R}^{+}}(a b=1)\right) \\
& \Leftrightarrow(\forall b)_{\mathbb{R}^{+}}\left((\exists a)_{\mathbb{R}^{+}}(a b \neq 1)\right) .
\end{aligned}
$$

Sometimes, we get "lucky" and changing the order does not change the logical meaning, but that is rare. One example:

$$
p:(\forall a)_{\mathbb{R}}\left((\exists b)_{\mathbb{R}^{+}}(a b=0)\right), \quad q:(\exists b)_{\mathbb{R}}\left((\forall a)_{\mathbb{R}^{+}}(a b=0)\right)
$$

