Lecture 2.8: Set-theoretic proofs

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Motivation

Thus far, we've come across statements like the following:

Theorem

For any sets A, B, and C, 1. $A \setminus (A \setminus B) \subseteq B$. 2. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. 3. If $A \cup B \subseteq A \cup C$, then $B \subseteq C$.

Thus far, our primary method of "proof" has been by examining a Venn diagram.

Did you catch the "lie" above? Let that be a cautionary tale for "proof by picture"...

Warm-up

Basic facts			
	$x \in A \cup B$	\Leftrightarrow	$x \in A$ or $x \in B$
	$x \not\in A \cup B$	\Leftrightarrow	$x ot\in A$ and $x ot\in B$
	$x \in A \cap B$	\Leftrightarrow	$x \in A$ and $x \in B$
	$x \not\in A \cap B$	\Leftrightarrow	$x \not\in A$ or $x \not\in B$
	$x \in A \setminus B$	\Leftrightarrow	$x \in A$ and $x ot\in B$
	$x \not\in A \setminus B$	\Leftrightarrow	$x ot\in A$ or $x \in B$
	$x \in A \times B$	\Leftrightarrow	$x = (a, b)$ for some $a \in A$, $b \in B$
	$A \subseteq B$	\Leftrightarrow	If $x \in A$, then $x \in B$
	A = B	\Leftrightarrow	$A \subseteq B$ and $A \supseteq B$

In this lecture, we'll see three techniques for proving A = B:

- (i) Explicitly writing $A = \{x \in U \mid ...\} = \cdots = \{x \in U \mid ...\} = B$.
- (ii) Showing $A \subseteq B$ and $A \supseteq B$.
- (iii) Indirectly, i.e., by contrapositive or contradiction.

Basic laws of propositional calculus

Recall that we've seen a number of basic laws of propositional calculus.

Moreover, each law has a dual law obtained by exchanging the symbols:

	witl	h∨
--	------	----

0 with 1.

Basic law	Name	Dual law
$p \lor q \Leftrightarrow q \lor p$	Commutativity	$p \land q \Leftrightarrow q \land p$
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$	Associativity	$(p \land q) \land r \Leftrightarrow p \land (q \land r)$
$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	Distributivity	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
$p \lor 0 \Leftrightarrow p$	Identity	$p \wedge 1 \Leftrightarrow p$
$p \wedge eg p \Leftrightarrow 0$	Negation	$p \lor eg p \Leftrightarrow 1$
$p \lor p \Leftrightarrow p$	Idempotent	$p \land p \Leftrightarrow p$
$p \land 0 \Leftrightarrow 0$	Null	$p \lor 1 \Leftrightarrow 1$
$p \land (p \lor q) \Leftrightarrow p$	Absorption	$p \lor (p \land q) \Leftrightarrow p$
$ egin{aligned} egin{aligned} end{aligned} & \neg p \land \neg q \end{aligned}$	DeMorgan's	$ eg (p \land q) \Leftrightarrow \neg p \lor \neg q$

We can turn each of these into an associated law of set theory by replacing:

p with A	\blacksquare \land with \cap	0 with Ø	• \neg with ^c
■ q with B	• \vee with \cup	1 with U	$\blacksquare \Leftrightarrow with =$

Basic laws of set theory

The basic laws of propositional calculus all have an associative basic law of set theory.

Moreover, each law has a dual law obtained by exchanging the symbols:

 $\blacksquare \emptyset$ with U.

Basic law	Name	Dual law
$A \cup B = B \cup A$	Commutativity	$A \cap B = B \cap A$
$(A \cup B) \cup C = A \cup (B \cup C)$	Associativity	$(A \cap B) \cap C = A \cap (B \cap C)$
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributivity	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
$A\cup \emptyset = A$	Identity	$A \cap U = A$
$A \cap A^{c} = \emptyset$	Negation	$A \cup A^c = U$
$A \cup A = A$	Idempotent	$A \cap A = A$
$A \cap \emptyset = \emptyset$	Null	$A \cup U = U$
$A \cap (A \cup B) = A$	Absorption	$A\cup (A\cap B)=A$
$(A\cup B)^c=A^c\cap B^c$	DeMorgan's	$(A \cap B)^c = A^c \cup B^c$

Let's start by proving $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ two different ways.

 $[\]blacksquare \cap \mathsf{with} \cup$

Method 1: proof using set notation

Theorem

For any sets A, B, and C,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Proof

$$A \cap (B \cup C) = \{x \in U \mid (x \in A) \land (x \in B \cup C)\}$$

$$= \{x \in U \mid (x \in A) \land [(x \in B) \lor (x \in C)]\}$$

$$= \{x \in U \mid [(x \in A) \land (x \in B)] \lor [(x \in A) \land (x \in C)]\}$$

$$= \{x \in U \mid (x \in A \cap B) \lor (x \in A \cap C)\}$$

$$= \{x \in U \mid x \in [(A \cap B) \cup (A \cap C)]\}$$

$$= (A \cap B) \cup (A \cap C)$$

Method 2: proof by showing \subseteq and \supseteq

Theorem

For any sets A, B, and C,

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Corollaries

Sometimes, establishing a theorem can lead right away to a follow-up result called a corollary.

Theorem

For any sets A, B, and C,

```
A \cap (B \cup C) = (A \cap B) \cup (A \cap C).
```

Corollary

For any sets A, B,

$$(A \cap B) \cup (A \cap B^c) = A.$$

Proof

Which method to use?

In many instances, such as proving $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, either of the two aforementioned methods work equally well.

However, sometimes there is no choice. Consider the following example from linear algebra.

Let V be a vector space over \mathbb{R} . Recall that the subspace spanned by $S \subseteq V$ is defined as

$$\mathsf{Span}(S) = \{a_1s_1 + \cdots + a_ks_k \mid a_i \in \mathbb{R}, s_i \in S\}.$$

Theorem

For any $S \subseteq V$,

$$\operatorname{Span}(S) = \bigcap_{S \subseteq W_{\alpha} \leq V} W_{\alpha},$$

where the intersection is taken over all subspaces W of V that contain S.

Method 3: Proof by contrapositive or contradiction

If the set equality A = B we wish to prove is the conclusion of an If-Then statement, then we can consider an indirect proof.

Let's recall this concept by considering the following statement that we wish to prove:

 $\forall x \in U$, If P(x), then Q(x)

An indirect proof can be casted two ways: by proving the contrapositive, or as a proof by contradiction.

Method	First step	Goal
Contrapositive	Take $x \in U$ for which $\neg Q(x)$	$\neg P(x)$
Contradiction	Suppose $\exists x \in U$ for which $P(x)$ and $\neg Q(x)$	$P(x)$ and $\neg P(x)$

Table : Difference between proof by contraposition and contradiction.

Method 3: Proof by contrapositive or contradiction

To illustrate this method, consider the following theorem.

Theorem

Let A, B, C be sets. If $A \subseteq B$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$.

Proof