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Motivation

Thus far, we’ve come across statements like the following:

Theorem

For any sets A, B, and C ,

1. A \ (A \ B) ⊆ B.

2. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

3. If A ∪ B ⊆ A ∪ C , then B ⊆ C .

Thus far, our primary method of “proof” has been by examining a Venn diagram.

A B

A B

C

Did you catch the “lie” above? Let that be a cautionary tale for “proof by picture”. . .
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Warm-up

Basic facts

x ∈ A ∪ B ⇔ x ∈ A or x ∈ B

x 6∈ A ∪ B ⇔ x 6∈ A and x 6∈ B

x ∈ A ∩ B ⇔ x ∈ A and x ∈ B

x 6∈ A ∩ B ⇔ x 6∈ A or x 6∈ B

x ∈ A \ B ⇔ x ∈ A and x 6∈ B

x 6∈ A \ B ⇔ x 6∈ A or x ∈ B

x ∈ A× B ⇔ x = (a, b) for some a ∈ A, b ∈ B

A ⊆ B ⇔ If x ∈ A, then x ∈ B

A = B ⇔ A ⊆ B and A ⊇ B

In this lecture, we’ll see three techniques for proving A = B:

(i) Explicitly writing A = {x ∈ U | . . . } = · · · = {x ∈ U | . . . } = B.

(ii) Showing A ⊆ B and A ⊇ B.

(iii) Indirectly, i.e., by contrapositive or contradiction.
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Basic laws of propositional calculus

Recall that we’ve seen a number of basic laws of propositional calculus.

Moreover, each law has a dual law obtained by exchanging the symbols:

∧ with ∨ 0 with 1.

Basic law Name Dual law

p ∨ q ⇔ q ∨ p Commutativity p ∧ q ⇔ q ∧ p

(p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) Associativity (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)

p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (p ∧ r) Distributivity p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r)

p ∨ 0⇔ p Identity p ∧ 1⇔ p

p ∧ ¬p ⇔ 0 Negation p ∨ ¬p ⇔ 1

p ∨ p ⇔ p Idempotent p ∧ p ⇔ p

p ∧ 0⇔ 0 Null p ∨ 1⇔ 1

p ∧ (p ∨ q)⇔ p Absorption p ∨ (p ∧ q)⇔ p

¬(p ∨ q)⇔ ¬p ∧ ¬q DeMorgan’s ¬(p ∧ q)⇔ ¬p ∨ ¬q

We can turn each of these into an associated law of set theory by replacing:

p with A

q with B

∧ with ∩
∨ with ∪

0 with ∅
1 with U

¬ with c

⇔ with =
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Basic laws of set theory

The basic laws of propositional calculus all have an associative basic law of set theory.

Moreover, each law has a dual law obtained by exchanging the symbols:

∩ with ∪ ∅ with U.

Basic law Name Dual law

A ∪ B = B ∪ A Commutativity A ∩ B = B ∩ A

(A ∪ B) ∪ C = A ∪ (B ∪ C) Associativity (A ∩ B) ∩ C = A ∩ (B ∩ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) Distributivity A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∪ ∅ = A Identity A ∩ U = A

A ∩ Ac = ∅ Negation A ∪ Ac = U

A ∪ A = A Idempotent A ∩ A = A

A ∩ ∅ = ∅ Null A ∪ U = U

A ∩ (A ∪ B) = A Absorption A ∪ (A ∩ B) = A

(A ∪ B)c = Ac ∩ Bc DeMorgan’s (A ∩ B)c = Ac ∪ Bc

Let’s start by proving A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) two different ways.
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Method 1: proof using set notation

Theorem

For any sets A, B, and C ,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof

A ∩ (B ∪ C) =
{
x ∈ U | (x ∈ A) ∧ (x ∈ B ∪ C)

}
definition of ∩

=
{
x ∈ U | (x ∈ A) ∧ [(x ∈ B) ∨ (x ∈ C)]

}
definition of ∪

=
{
x ∈ U | [(x ∈ A) ∧ (x ∈ B)] ∨ [(x ∈ A) ∧ (x ∈ C)]

}
distributive law

=
{
x ∈ U | (x ∈ A ∩ B) ∨ (x ∈ A ∩ C)

}
definition of ∩

=
{
x ∈ U | x ∈ [(A ∩ B) ∪ (A ∩ C)]

}
definition of ∪

= (A ∩ B) ∪ (A ∩ C) �
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Method 2: proof by showing ⊆ and ⊇
Theorem

For any sets A, B, and C ,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof

“⊆”

“⊇”
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Corollaries

Sometimes, establishing a theorem can lead right away to a follow-up result called a corollary.

Theorem

For any sets A, B, and C ,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Corollary

For any sets A, B,
(A ∩ B) ∪ (A ∩ Bc ) = A.

Proof
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Which method to use?

In many instances, such as proving A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), either of the two
aforementioned methods work equally well.

However, sometimes there is no choice. Consider the following example from linear algebra.

Let V be a vector space over R. Recall that the subspace spanned by S ⊆ V is defined as

Span(S) =
{
a1s1 + · · ·+ ak sk | ai ∈ R, si ∈ S}.

Theorem

For any S ⊆ V ,

Span(S) =
⋂

S⊆Wα≤V

Wα,

where the intersection is taken over all subspaces W of V that contain S .
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Method 3: Proof by contrapositive or contradiction

If the set equality A = B we wish to prove is the conclusion of an If-Then statement, then
we can consider an indirect proof.

Let’s recall this concept by considering the following statement that we wish to prove:

∀x ∈ U, If P(x), then Q(x)

An indirect proof can be casted two ways: by proving the contrapositive, or as a proof by
contradiction.

Method First step Goal

Contrapositive Take x ∈ U for which ¬Q(x) ¬P(x)

Contradiction Suppose ∃x ∈ U for which P(x) and ¬Q(x) P(x) and ¬P(x)

Table : Difference between proof by contraposition and contradiction.
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Method 3: Proof by contrapositive or contradiction

To illustrate this method, consider the following theorem.

Theorem

Let A,B,C be sets. If A ⊆ B and B ∩ C = ∅, then A ∩ C = ∅.

Proof
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