Lecture 2.8: Set-theoretic proofs

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Motivation

Thus far, we've come across statements like the following:

Theorem

For any sets A, B, and C,

1. $A \backslash(A \backslash B) \subseteq B$.
2. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
3. If $A \cup B \subseteq A \cup C$, then $B \subseteq C$.

Thus far, our primary method of "proof" has been by examining a Venn diagram.

Did you catch the "lie" above? Let that be a cautionary tale for "proof by picture"...

Warm-up

Basic facts

$$
\begin{array}{rll}
x \in A \cup B & \Leftrightarrow & x \in A \text { or } x \in B \\
x \notin A \cup B & \Leftrightarrow & x \notin A \text { and } x \notin B \\
x \in A \cap B & \Leftrightarrow & x \in A \text { and } x \in B \\
x \notin A \cap B & \Leftrightarrow & x \notin A \text { or } x \notin B \\
x \in A \backslash B & \Leftrightarrow & x \in A \text { and } x \notin B \\
x \notin A \backslash B & \Leftrightarrow & x \notin A \text { or } x \in B \\
x \in A \times B & \Leftrightarrow & x=(a, b) \text { for some } a \in A, b \in B \\
A \subseteq B & \Leftrightarrow & \text { If } x \in A, \text { then } x \in B \\
A=B & \Leftrightarrow & A \subseteq B \text { and } A \supseteq B
\end{array}
$$

In this lecture, we'll see three techniques for proving $A=B$:
(i) Explicitly writing $A=\{x \in U \mid \ldots\}=\cdots=\{x \in U \mid \ldots\}=B$.
(ii) Showing $A \subseteq B$ and $A \supseteq B$.
(iii) Indirectly, i.e., by contrapositive or contradiction.

Basic laws of propositional calculus

Recall that we've seen a number of basic laws of propositional calculus.
Moreover, each law has a dual law obtained by exchanging the symbols:

- \wedge with \vee
- 0 with 1 .

Basic law	Name	Dual law
$p \vee q \Leftrightarrow q \vee p$	Commutativity	$p \wedge q \Leftrightarrow q \wedge p$
$(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r)$	Associativity	$(p \wedge q) \wedge r \Leftrightarrow p \wedge(q \wedge r)$
$p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$	Distributivity	$p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$
$p \vee 0 \Leftrightarrow p$	Identity	$p \wedge 1 \Leftrightarrow p$
$p \wedge \neg p \Leftrightarrow 0$	Negation	$p \vee \neg p \Leftrightarrow 1$
$p \vee p \Leftrightarrow p$	Idempotent	$p \wedge p \Leftrightarrow p$
$p \wedge 0 \Leftrightarrow 0$	Null	$p \vee 1 \Leftrightarrow 1$
$p \wedge(p \vee q) \Leftrightarrow p$	Absorption	$p \vee(p \wedge q) \Leftrightarrow p$
$\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q$	DeMorgan's	$\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$

We can turn each of these into an associated law of set theory by replacing:

- p with A
- \wedge with \cap
- \vee with \cup
- 0 with \emptyset
- \neg with ${ }^{c}$
- q with B
M. Macauley (Clemson)

Basic laws of set theory

The basic laws of propositional calculus all have an associative basic law of set theory.
Moreover, each law has a dual law obtained by exchanging the symbols:

- \cap with \cup
- \emptyset with U.

Basic law	Name	Dual law
$A \cup B=B \cup A$	Commutativity	$A \cap B=B \cap A$
$(A \cup B) \cup C=A \cup(B \cup C)$	Associativity	$(A \cap B) \cap C=A \cap(B \cap C)$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	Distributivity	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$A \cup \emptyset=A$	Identity	$A \cap U=A$
$A \cap A^{c}=\emptyset$	Negation	$A \cup A^{c}=U$
$A \cup A=A$	Idempotent	$A \cap A=A$
$A \cap \emptyset=\emptyset$	Null	$A \cup U=U$
$A \cap(A \cup B)=A$	Absorption	$A \cup(A \cap B)=A$
$(A \cup B)^{c}=A^{c} \cap B^{c}$	DeMorgan's	$(A \cap B)^{c}=A^{c} \cup B^{c}$

Let's start by proving $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ two different ways.

Method 1: proof using set notation

Theorem

For any sets A, B, and C,

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

Proof

$$
\begin{aligned}
A \cap(B \cup C) & =\{x \in U \mid(x \in A) \wedge(x \in B \cup C)\} & & \text { definition of } \cap \\
& =\{x \in U \mid(x \in A) \wedge[(x \in B) \vee(x \in C)]\} & & \text { definition of } \cup \\
& =\{x \in U \mid[(x \in A) \wedge(x \in B)] \vee[(x \in A) \wedge(x \in C)]\} & & \text { distributive law } \\
& =\{x \in U \mid(x \in A \cap B) \vee(x \in A \cap C)\} & & \text { definition of } \cap \\
& =\{x \in U \mid x \in[(A \cap B) \cup(A \cap C)]\} & & \text { definition of } \cup \\
& =(A \cap B) \cup(A \cap C) & & \square
\end{aligned}
$$

Method 2: proof by showing \subseteq and \supseteq

Theorem
For any sets A, B, and C,

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

Proof

" \subseteq "
"?"

Corollaries

Sometimes, establishing a theorem can lead right away to a follow-up result called a corollary.

Theorem

For any sets A, B, and C,

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) .
$$

Corollary
For any sets A, B,

$$
(A \cap B) \cup\left(A \cap B^{C}\right)=A .
$$

Proof

Which method to use?

In many instances, such as proving $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$, either of the two aforementioned methods work equally well.

However, sometimes there is no choice. Consider the following example from linear algebra.
Let V be a vector space over \mathbb{R}. Recall that the subspace spanned by $S \subseteq V$ is defined as

$$
\operatorname{Span}(S)=\left\{a_{1} s_{1}+\cdots+a_{k} s_{k} \mid a_{i} \in \mathbb{R}, s_{i} \in S\right\}
$$

Theorem

For any $S \subseteq V$,

$$
\operatorname{Span}(S)=\bigcap_{S \subseteq W_{\alpha} \leq V} W_{\alpha}
$$

where the intersection is taken over all subspaces W of V that contain S.

Method 3: Proof by contrapositive or contradiction

If the set equality $A=B$ we wish to prove is the conclusion of an If-Then statement, then we can consider an indirect proof.

Let's recall this concept by considering the following statement that we wish to prove:

$$
\forall x \in U, \quad \text { If } P(x) \text {, then } Q(x)
$$

An indirect proof can be casted two ways: by proving the contrapositive, or as a proof by contradiction.

Method	First step	Goal
Contrapositive	Take $x \in U$ for which $\neg Q(x)$	$\neg P(x)$
Contradiction	Suppose $\exists x \in U$ for which $P(x)$ and $\neg Q(x)$	$P(x)$ and $\neg P(x)$

Table: Difference between proof by contraposition and contradiction.

Method 3: Proof by contrapositive or contradiction

To illustrate this method, consider the following theorem.
Theorem
Let A, B, C be sets. If $A \subseteq B$ and $B \cap C=\emptyset$, then $A \cap C=\emptyset$.
Proof

