Lecture 3.1: The pigeonhole principle

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

A "very obvious" fact

Pigeonhole principle

If there are $n+1$ pigeons in n holes, then some hole contains at least 2 pigeons.

In this lecture, we'll see some rather surprising consequences of this seemingly simple fact.

Applications of the pigeonhole principle

Groups of people

- Among 13 people, there are two with birthdays in the same month.
- In NYC, there are two non-bald people with the same number of hairs on their head.
- In a class of n people, there are two with the same number of friends in the class.

An application to graph theory

Claim

Every graph contains two nodes with the same degree.

A geometric application

Claim

If you draw 5 points on a sphere, then it is always possible to cut it so that some hemisphere contains at least 4 of them (possibly on the boundary, i.e., on the cut).

An application to number theory

Let S be a set of distinct 101 integers chosen from 1,2, ... 200 .
Note that there are $\binom{200}{101} \approx 8.97 \times 10^{58}$ possibilities for S.

Claims

(i) S contains two consecutive integers.
(ii) S contains two integers such that one of them is divisible by the other.

Generalizations

A stronger pigeonhole principle

Let n and r be integers. If $n(r-1)+1$ objects are placed in n boxes, then some box contains at least r objects.

Examples

- In any group of $12(3-1)+1=25$ people, at least three were born in the same month.
- In a school of $366(67-1)+1=24156$ students, at least 67 share a birthday.

The strong pigeonhole principle

Let $q_{1}, \ldots, q_{n} \in \mathbb{Z}^{+}$. If $q_{1}+\cdots+q_{n}-n+1$ objects are put into n boxes, then either the $1^{\text {st }}$ box contains $\geq q_{1}$ objects, or the $2^{\text {nd }}$ contains $\geq q_{2}$ objects, \ldots, or the $n^{\text {th }}$ box contains $\geq q_{n}$ objects.

Note that the special case of $q_{1}=\cdots q_{n}=1$ is the pigeonhole priniple.
The special case of $q_{1}=\cdots q_{n}=r$ yields the "stronger pigeonhole principle," above.

