## Lecture 3.1: The pigeonhole principle

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

## A "very obvious" fact

### Pigeonhole principle

If there are n + 1 pigeons in *n* holes, then some hole contains at least 2 pigeons.



In this lecture, we'll see some rather surprising consequences of this seemingly simple fact.

# Applications of the pigeonhole principle

### Groups of people

- Among 13 people, there are two with birthdays in the same month.
- In NYC, there are two non-bald people with the same number of hairs on their head.
- In a class of *n* people, there are two with the same number of friends in the class.

# An application to graph theory

## Claim

Every graph contains two nodes with the same degree.

# A geometric application

Claim

If you draw 5 points on a sphere, then it is always possible to cut it so that some hemisphere contains at least 4 of them (possibly on the boundary, i.e., on the cut).

### An application to number theory

Let S be a set of distinct 101 integers chosen from  $1, 2, \ldots, 200$ .

Note that there are  $\binom{200}{101} \approx 8.97 \times 10^{58}$  possibilities for S.

#### Claims

- (i) S contains two consecutive integers.
- (ii) S contains two integers such that one of them is divisible by the other.

## Generalizations

#### A stronger pigeonhole principle

Let n and r be integers. If n(r-1) + 1 objects are placed in n boxes, then some box contains at least r objects.

### Examples

- In any group of 12(3-1) + 1 = 25 people, at least three were born in the same month.
- In a school of 366(67 1) + 1 = 24156 students, at least 67 share a birthday.

#### The strong pigeonhole principle

Let  $q_1, \ldots, q_n \in \mathbb{Z}^+$ . If  $q_1 + \cdots + q_n - n + 1$  objects are put into n boxes, then either the 1<sup>st</sup> box contains  $\geq q_1$  objects, or the 2<sup>nd</sup> contains  $\geq q_2$  objects, ..., or the  $n^{\text{th}}$  box contains  $\geq q_n$  objects.

Note that the special case of  $q_1 = \cdots q_n = 1$  is the pigeonhole priniple.

The special case of  $q_1 = \cdots q_n = r$  yields the "stronger pigeonhole principle," above.