Lecture 3.2: Parity, and proving existential statements

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Overview

Definition

An integer n is:

- even iff $\exists k \in \mathbb{Z}$ such that $n=2 k$,
- odd iff $\exists k \in \mathbb{Z}$ such that $n=2 k+1$,
- prime iff $n>1$ and $\forall a, b \in \mathbb{Z}^{+}$, if $n=a b$, then $n=a$ or $n=b$.
- composite iff $n>1$ and $n=a b$ for some integers $1<a, b<n$.

Examples

Let's think about what would be needed to establish the following statements.

1. (Proving \exists). Show that there exists an even integer that can be written as a sum of two prime numbers in two ways.
2. (Disproving \exists). Show that there does not exist $a, b, c \in \mathbb{Z}$, and $n>2$ such that $a^{n}+b^{n}=c^{n}$.
3. (Proving \forall). Show that " $2^{2^{n}}+1$ is prime, $\forall n$ ".
4. (Disproving \forall). Show that the statement " $2^{2^{n}}+1$ is prime, $\forall n$ " is actually false.

In this lecture, we'll focus on parity (even vs. odd), and proving existential statements.

Proving an existential statement

A statement such as

$$
\exists x \in U \text { such that } Q(x)
$$

is true iff

$$
Q(x) \text { is true for at least one } x \in U \text {. }
$$

There are several ways to prove such a statement:

1. Constructively: find or construct such an x.
2. Non-constructively: show that such an x must exist, by an axiom, theorem, or other means.
3. Indirectly: by contrapositive or contradiction.

Examples of constructive proofs

Proposition

There exists an integer that can be written as a sum of two prime numbers in two ways.

Proof

We'll find such an integer. Note that

$$
10=5+5=3+7
$$

Proposition

Let n and m be odd integers. Then $n+m$ is even, i.e., $n+m=2 k$ for some $k \in \mathbb{Z}$.

Proof

We'll construct a way to write $n+m=2 k$.
First, write $n=2 a+1$ and $m=2 b+1$ for some $a, b \in \mathbb{Z}$.
Note that $n+m=(2 a+1)+(2 b+1)=2(a+b)+2=2(a+b+1)$, hence $n+m$ is even.

Examples of non-constructive and indirect proofs

Proposition

There exist irrational numbers $x, y \in \mathbb{R}$ such that x^{y} is rational.

Proof

If $\sqrt{2}^{\sqrt{2}}$ is rational, we're done. (Let $x=y=\sqrt{2}$).
If $\sqrt{2}^{\sqrt{2}}$ is irrational, let $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$. Note that

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} \cdot \sqrt{2}}=2 .
$$

Proposition

Prove that if $5 n+2$ is odd, then n is odd.

Proof (by contrapositive)

Suppose that n is even, i.e., $n=2 k$.
Then $5 n+2=5(2 k)+2=2(5 k+1)$ is even.

More practice

Proposition

An integer n is even if and only if $n+1$ is odd.

Proof

Disproving existential statements

To disprove an existential statement,

$$
\exists x \in U \text { such that } Q(x)
$$

we have to show that

$$
\forall x \in U, \neg Q(x)
$$

i.e., prove a universal statement.

This will be the focus of the next lecture. We've actually done a few of these already.
For example, rephrasing an earlier result:

Proposition

For all odd integers n and m, the sum $n+m$ is even.

