Lecture 3.5: Rational and irrational numbers

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Overview

Definition

A real number r is rational if $r = \frac{a}{b}$ for integers $a, b \in \mathbb{Z}$. Otherwise, it is irrational.

Examples (not all with proof)

- 1. Every integer is rational, because $n = \frac{n}{1}$.
- 2. The sum of two rational numbers is rational.
- 3. Every decimal that terminates is rational. For example, $1.234 = 1 + \frac{234}{1000} = \frac{1234}{1000}$.
- 4. Every repeating decimal is rational. For example, if x = 0.121212..., then

$$99x = 100x - x = 12.12121212... - 0.12121212... = 12,$$

so 99x = 12, i.e., $x = \frac{12}{99}$.

5. The numbers $\sqrt{2}$, π , and e are irrational.

Exercise

Show that every repeating decimal is rational.

Basic properties

Proposition

- (i) If r and s are rational, then r + s and rs are rational.
- (ii) If $r \neq 0$ is rational and s is irrational, then r + s and rs are irrational.
- (iii) If r and s are irrational, then r + s is ...???

Proof

Proofs of irrationality

Theorem (5^{th} century B.C.)

 $\sqrt{2}$ is irrational.

Proof

Suppose for sake of contradiction that $\sqrt{2} = \frac{m}{n}$, for some integers *m*, *n*, with no common prime factors. This means that

$$2=\frac{m^2}{n^2},$$

or equivalently, $2n^2 = m^2$.

How can we find a contradiction from this...?

Proofs of irrationality

Exercises

- (i) Prove that $\sqrt{3}$ is irrational.
- (ii) Prove that $\sqrt{2} + \sqrt{3}$ is irrational.
- (iii) Prove that $\sqrt[3]{2}$ is irrational.