Lecture 3.6: Quotient, remainder, ceiling and floor

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Division and remainder

Theorem

Given any $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$, there exists unique integers q, r such that

 $n = dq + r, \qquad \qquad 0 \le r < d.$

We call $q := n \operatorname{div} d$ and $r := n \operatorname{mod} d$ the quotient and remainder, respectively.

Examples

- 1. Compute 365 div 7 and 365 mod 7.
- 2. Suppose $n \mod 11 = 6$. Compute $4n \mod 11$.
- 3. Given $n \in \mathbb{Z}$, compute $n^2 \mod 4$.

Division and remainder

If $n \in \mathbb{Z}$ is odd, then $n^2 \mod 8 = 1$. Equivalently,

 \forall odd n, $\exists m \in \mathbb{Z}$ such that $n^2 = 8m + 1$.

Definition

Given $x \in \mathbb{R}$, the floor of x is defined as

 $|x| = n \quad \Leftrightarrow \quad n \leq x < n+1.$

The ceiling of x is defined as

$$[x] = n \quad \Leftrightarrow \quad n - 1 < x \le n.$$

Questions

Are the following true or false?

1.
$$|x-1| = |x| - 1$$

2.
$$\lfloor x - y \rfloor = \lfloor x \rfloor - \lfloor y \rfloor$$
.

Proposition

For all $x \in \mathbb{R}$ and $m \in \mathbb{Z}$, $\lfloor x + m \rfloor = \lfloor x \rfloor + m$.

Proof

By definition, $n \le x < n+1$, where $\lfloor x \rfloor = n$.

Adding m yields

$$\underbrace{m+m}_{|x+m|} \le x+m < n+m+1.$$

Note that $\lfloor x \rfloor = n$ implies that $n + m = \lfloor x \rfloor + m$.

Proposition

For all integers n,

$$\left\lfloor \frac{n}{2} \right\rfloor = \begin{cases} \frac{n}{2} & n \text{ is even} \\ \frac{n-1}{2} & n \text{ is odd.} \end{cases}$$

Proposition

For all integers n and d,

$$n \text{ div } d = \left\lfloor \frac{n}{d} \right\rfloor, \quad \text{and} \quad n \text{ mod } d = n - d \left\lfloor \frac{n}{d} \right\rfloor.$$