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Greatest common divisor

Definition

Let a, b ∈ Z, not both zero. The greatest common divisor of a and b, denoted gcd(a, b), is
the positive integer d satisfying:

(i) d is a common divisor of a and b, i.e.,

d | a and d | b.

(ii) If c also divides a and b, then c ≤ d . In other words,

∀c ∈ N, if c | a and c | b, then c ≤ d .

Examples

Compute the following:

1. gcd(72, 63) =

2. gcd(1012, 618) =

3. gcd(5, 0) =

4. gcd(0, 0) =
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Greatest common divisor

Lemma

If a, b ∈ Z are not both zero, and q, r ∈ Z satisfy a = bq + r , then

gcd(a, b) = gcd(b, r).

Proof

We’ll show:

1. gcd(a, b) ≤ gcd(b, r).

2. gcd(b, r) ≤ gcd(a, b).
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The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, The
Elements, in which he described what is now known as the
Euclidean algorithm:

Proposition VII.2 (Euclid’s Elements)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

If a | b, then gcd(a, b) = a;

If a = bq + r , then gcd(a, b) = gcd(b, r).

This is best seen by an example: Let a = 654 and b = 360.

654 = 360 · 1 + 294 gcd(654, 360) = gcd(360, 294)

360 = 294 · 1 + 66 gcd(360, 294) = gcd(294, 66)

294 = 66 · 4 + 30 gcd(294, 66) = gcd(66, 30)

66 = 30 · 2 + 6 gcd(66, 30) = gcd(30, 6)

30 = 6 · 5 gcd(30, 6) = 6.

We conclude that gcd(654, 360) = 6.
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The Euclidean algorithm (modernized)

Input: Integers A,B ∈ Z with A > B ≥ 0.

Initalize. a := A, b := B, r := B.

while (b 6= 0)

r := a mod b

a := b

b := r

end while

gcd := a

return gcd;

M. Macauley (Clemson) Lecture 3.7: The Euclidean algorithm Discrete Mathematical Structures 5 / 7

mailto:macaule@clemson.edu


Writing the gcd as a linear combination

Proposition

Let a, b ∈ Z, not both zero. Then d = gcd(a, b) is the smallest positive integer that can be
written as

d = ax + by , for some x , y ∈ Z.

Proof

Define the set
S = {u | u ∈ Z+, u = ax + by for some x , y ∈ Z}.

Let c = min S . Our goal is to show that d = c. We’ll show:

1. c ≥ d .

2. c ≤ d .
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The extended Euclidean algorithm

It can be useful to keep track of extra information when doing the Euclidean algorithm.

The following is an example of the extended Euclidean algorithm, for a = 654 and b = 360.

654 360

654 = 1 · 654 + 0 · 360 1 0

360 = 0 · 654 + 1 · 360 0 1

654 = 360 · 1 + 294 294 = 1 · 654− 1 · 360 1 −1

360 = 294 · 1 + 66 66 = 1 · 360− 1 · 294 −1 2

294 = 66 · 4 + 30 30 = 1 · 294− 4 · 66 5 −9

66 = 30 · 2 + 6 6 = 1 · 66− 2 · 30 −11 20

30 = 6 · 5

We conclude that:
gcd(654, 360) = 6 = 654(−11) + 360(20).

This allows us to solve equations of the form

654x ≡ 6 mod 360 =⇒ x = −11 ≡ 349 (mod 360)

and
360x ≡ 6 mod 654 =⇒ x = 20 (mod 654),

which we’ll need when we study cryptography.
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