Lecture 4.4: Functions

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

What is a function?

Definition

A function from a set A to a set B is a relation $f \subseteq A \times B$, such that every $a \in A$ is related to exactly one $b \in B$. For notation, we often abbreviate $(a, b) \in f$ as $f(a)=b$.

We call A the domain, B the co-domain, and write $f: A \rightarrow B$.
The image (or range) of f is the set

$$
f(A)=\{b \in B \mid b=f(a) \text { for some } a \in A\}=\{f(a) \mid a \in A\} .
$$

The preimage of $b \in B$ is the set

$$
f^{-1}(b):=\{a \in A \mid f(a)=b\} .
$$

- Sometimes a function is not well-defined, especially if the domain is a set of equivalence classes. For example:

$$
f: \mathbb{Q} \longrightarrow \mathbb{Z}, \quad f\left(\frac{m}{n}\right)=m
$$

- Sometimes functions appear superficially different, but are the same. For example:

$$
f, g: \mathbb{Z}_{3} \longrightarrow \mathbb{Z}_{3}, \quad f(x)=x^{3}, \quad g(x)=x
$$

- The notation $f^{-1}(b)$ does not imply that f has an "inverse function".

Ways to describe functions

- Arrow diagrams. (When A and B are finite and small.)
- Formulas (Not always possible.) For example,

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x)=x^{2}
$$

- Cases. For example, consider

$$
f: \mathbb{N}^{+} \longrightarrow \mathbb{Q}, \quad f=\left\{(1,2),\left(2, \frac{1}{2}\right),(3,9),\left(4, \frac{1}{4}\right), \ldots\right\}
$$

which can be written as

$$
f(x)= \begin{cases}x^{2} & x \text { odd } \\ 1 / x & x \text { even }\end{cases}
$$

- Data (no pattern). A survey of 1000 people asking how many hours of sleep they get in a day is a function

$$
f:\{0,1,2, \ldots, 24\} \longrightarrow\{0,1,2, \ldots, 1000\}
$$

Or we could "turn it around", as $g:\{0,1,2, \ldots, 1000\} \longrightarrow\{0,1,2, \ldots, 24\}$.

- Sequences. (If domain is discrete.) For example, $a_{n}=\frac{1}{n}$.
- Tables. We've seen these for "Boolean" functions, $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

Examples of functions

- Let X be any set. The identity function is defined as

$$
i: X \longrightarrow X, \quad i(x)=x
$$

■ Fix a finite set S. Consider the following "size function" on the power set:

$$
f: 2^{S} \longrightarrow \mathbb{N}, \quad f(A)=|A|
$$

- Let $\mathbb{Z}_{2}=\{0,1\}$. The logical OR function, in "polynomial form", is

$$
f: \mathbb{Z}_{2}^{2} \longrightarrow \mathbb{Z}_{2}, \quad f(x, y)=x y+x+y \quad(\bmod 2)
$$

- Sequences are functions. For example, the sequence $1,4,9,16, \ldots$ is

$$
f: \mathbb{N}^{+} \longrightarrow \mathbb{N}^{+}, \quad f(n)=n^{2}
$$

- Let S be a set. Each subset $A \subseteq S$ has a characteristic or indicator function

$$
\chi_{A}: S \longrightarrow\{0,1\}, \quad \chi_{A}(s)= \begin{cases}1 & s \in A \\ 0 & s \notin A\end{cases}
$$

- Hash functions from computer science.

Basic properties of functions

Given a function $f: X \rightarrow Y$ and $A \subseteq X$, we can define the image of A under f :

$$
f(A)=\{f(a) \mid a \in A\} .
$$

Lemma

Let $f: X \rightarrow Y$. Then for any $A, B \subseteq X$,
(i) $f(A \cup B) \subseteq f(A) \cup f(B)$.
(ii) $f(A \cap B) \subseteq f(A) \cap f(B)$.

Proof

Equality actually holds for one of these. . . can you figure out which one?

More on sequences

Sequences are just functions from a discrete set, usually \mathbb{N} or \mathbb{N}^{+}.
For example, consider the sequence

$$
1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5}, \ldots
$$

We can express this several ways, depending on whether we start at 0 or 1 :

$$
f:\{0,1,2 \ldots\} \rightarrow \mathbb{Q}, \quad f(n)=\frac{(-1)^{n}}{n+1}, \quad \text { or } \quad g:\{1,2, \ldots\} \rightarrow \mathbb{Q}, \quad g(n)=\frac{(-1)^{n+1}}{n} .
$$

For ease of notation, we often define $a_{n}:=f(n)$.

A few more definitions

Definition

Let $f: X \rightarrow Y$ be a function. Then

- f is injective, or $1-1$, if $f(x)=f(y)$ implies $x=y$.
- f is surjective, or onto, if $f(X)=Y$.
- f is bijective if it is both $1-1$ and onto.

If $f: X \rightarrow Y$ is bijective, then we can define its inverse function

$$
f^{-1}: Y \longrightarrow X, \quad f^{-1}=\{(b, a) \mid(a, b) \in f\}
$$

Given $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, we can define the composition

$$
g \circ f: X \longrightarrow Z, \quad g \circ f=\{(x, z) \mid \exists y \in Y \text { such that }(x, y) \in f,(y, z) \in g\}
$$

Definition

Two sets X, Y have the same cardinality (size) if there exists a bijection $f: X \rightarrow Y$.

Injective (1-1) iff left-cancelable

Definition
Suppose $f: Y \rightarrow Z$, and $g_{1}, g_{2}: X \rightarrow Y$. Then f is left-cancelable if $f \circ g_{1}=f \circ g_{2}$ implies $g_{1}=g_{2}$.

Theorem
A function is left-cancelable iff it is injective.

Proof

Surjective (onto) iff right-cancelable

Theorem

Suppose $f: X \rightarrow Y$, and $h_{1}, h_{2}: Y \rightarrow Z$. Then f is right-cancelable if $h_{1} \circ f=h_{2} \circ f$ implies $h_{1}=h_{2}$

Theorem

A function is right-cancelable iff it is surjective.

Proof

