Lecture 4.5: Cardinality and infinite sets

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Set cardinality

Question

What does it means for two sets X and Y to have the same size?

This is easy if the sets are finite. But what about the following sets:

- 2N⁺ (positive even numbers)
- N⁺ (positive integers)
- N (non-negative integers)
- $\blacksquare \mathbb{Z}$ (integers)
- Q (rational numbers)
- ℝ (real numbers)
- $\mathcal{F} := \{ \text{functions } f : \mathbb{R} \to \mathbb{R} \}$

Clearly,

$$2\mathbb{N}^+ \subsetneq \mathbb{N}^+ \subsetneq \mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R} \subsetneq \mathcal{F}$$

(assuming we associate the constant functions with real numbers).

But do any of these have the same size, and if so, what does that mean?

Recall some definitions

Definition

- Let $f: X \to Y$ be a function. Then
 - f is injective, or 1–1, if f(x) = f(y) implies x = y.
 - f is surjective, or onto, if $\forall y \in Y$, $\exists x \in X$ such that f(x) = y.
 - *f* is bijective if it is both 1–1 and onto.

The notation $f: X \hookrightarrow Y$ means f is 1–1.

The notation $f: X \twoheadrightarrow Y$ means f is onto.

If $f: X \to Y$ is bijective, then there is a 1–1 correspondence between elements of X and Y.

When f is bijective, we can define its inverse function, f^{-1} : $Y \to X$.

Definition

Two sets X, Y have the same cardinality if there exists a bijection $f: X \to Y$.

Some "problems" with infinity

What do you think the following equations "should be"?

Let's consider the following thought experiment.

Suppose Farmer A plants a seed every day, but every fourth day, a bird comes along and eats the seed he just planted.

Suppose Farmer B plants a seed every day, but every fourth day, a bird comes along and eats the first seed he planted.

	•	•	•	•	•	•	•	•	•	•	•	•	
--	---	---	---	---	---	---	---	---	---	---	---	---	--

Which farmer has more plants remaining "at the end of time"?

Hilbert's Hotel

Here's another thought experiment, proposed by David Hilbert in 1924.

Imagine a hotel that has infinitely rooms, but no vacancies. However, the manager is able to shuffle people around to open up a room, if needed.

1	2	3	4	5	6	7	8	9	10	11	
---	---	---	---	---	---	---	---	---	----	----	--

If the hotel is full, what can the manager do to accommodate:

- A single person who shows up wanting a room?
- 10 people who show up wanting rooms?
- An "infinite football team" that shows up wanting rooms?
- A second "infinite football team" that shows up wanting room?
- The "rational number football team" that shows up wanting rooms?
- The "real number football team" that shows up wanting rooms?

Cardinality of the rationals

Suppose a bus containing the "positive rational number football team" shows up to Hilbert's hotel, which is empty.

How could the manager assign room numbers?

: 5/1	: 5/2	: 5/3	: 5/4	: 5/5	⁵ / ₆	
4/1	4/2	4/3	4/4	4/5	4/6	
3/1	3/2	3/3	3/4	3/5	3/6	
2/1	2/2	2/3	2/4	2/5	$^{2}/_{6}$	
$^{1/1}$	1/2	1/3	1/4	1/5	$1/_6$	

1	2	3	4	5	6	7	8	9	10	11		
---	---	---	---	---	---	---	---	---	----	----	--	--

Cantor's diagonal argument

Theorem (Georg Cantor, 1891)

 $|\mathbb{R}| > |\mathbb{Q}|.$

Proof

It suffices to show that $|[0,1)|>|\mathbb{N}|.$

For sake of contradiction, suppose that there was a bijection $f \colon \mathbb{N} \to [0, 1)$.

Let's make a table of the numbers f(0), f(1), f(2), f(3), ...

There are infinitely many infinities

Theorem

For any set A, we have $|2^A| > |A|$.

Proof

It suffices to show that there is no surjection $f: A \rightarrow 2^A$.

Consider a function $f: A \rightarrow 2^A$, and define

 $D = \{a \in A \mid a \notin f(a)\} \in 2^A.$

Take any $a \in A$. We will show that $f(a) \neq D$, and so f is not onto.

<u>Case 1</u>. If $a \in D$, then by definition, $a \notin f(a)$.

This means that $f(a) \neq D$, because D contains a but f(a) doesn't.

Case 2. If $a \notin D$, then by definition, $a \in f(a)$.

But this means that $f(a) \neq D$, because f(a) contains a but D doesn't.

More fun facts

Definition

Define $\aleph_0 = |\mathbb{N}|$. A set *S* such that $|S| = \aleph_0$ is said to be countably infinite. The term countable (usually) means at most countably infinite.

If $|S| > \aleph_0$, then S is uncountable.

- The rational numbers can be "covered" with intervals whose total length is 1.
- The set of real-valued functions is strictly larger than \mathbb{R} . The latter's cardinality is called the continuum, denoted *c*.
- To answer our question from the beginning of the lecture:

 $|2\mathbb{N}^+|=|\mathbb{N}^+|=|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|<|\mathbb{R}|<|\mathcal{F}|.$

- The question of whether there exists a set S with $\aleph_0 < |S| < c$ is called the continuum hypothesis.
- Results from Gödel and Paul Cohen have showed that the continuum hypothesis is undecidable – it lies outside of the standard axioms of set theory!