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Set cardinality

Question

What does it means for two sets X and Y to have the same size?

This is easy if the sets are finite. But what about the following sets:

2N+ (positive even numbers)

N+ (positive integers)

N (non-negative integers)

Z (integers)

Q (rational numbers)

R (real numbers)

F := {functions f : R→ R}

Clearly,
2N+ ( N+ ( N ( Z ( Q ( R ( F

(assuming we associate the constant functions with real numbers).

But do any of these have the same size, and if so, what does that mean?
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Recall some definitions

Definition

Let f : X → Y be a function. Then

f is injective, or 1–1, if f (x) = f (y) implies x = y .

f is surjective, or onto, if ∀y ∈ Y , ∃x ∈ X such that f (x) = y .

f is bijective if it is both 1–1 and onto.

The notation f : X ↪→ Y means f is 1–1.

The notation f : X � Y means f is onto.

If f : X → Y is bijective, then there is a 1–1 correspondence between elements of X and Y .

When f is bijective, we can define its inverse function, f −1 : Y → X .

Definition

Two sets X , Y have the same cardinality if there exists a bijection f : X → Y .
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Some “problems” with infinity

What do you think the following equations “should be”?

1 +∞ =

1/∞ =

∞/1 =

0/∞ =

2 · ∞ =

∞ ·∞ =

∞−∞ =

∞− 1
4
∞ =

Let’s consider the following thought experiment.

Suppose Farmer A plants a seed every day, but every fourth day, a bird comes along and eats
the seed he just planted.

• • • • • • • • • • • • · · ·

Suppose Farmer B plants a seed every day, but every fourth day, a bird comes along and eats
the first seed he planted.

• • • • • • • • • • • • · · ·

Which farmer has more plants remaining “at the end of time”?
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Hilbert’s Hotel

Here’s another thought experiment, proposed by David Hilbert in 1924.

Imagine a hotel that has infinitely rooms, but no vacancies. However, the manager is able to
shuffle people around to open up a room, if needed.

· · ·

· · ·

1 2 3 4 5 6 7 8 9 10 11

If the hotel is full, what can the manager do to accommodate:

A single person who shows up wanting a room?

10 people who show up wanting rooms?

An “infinite football team” that shows up wanting rooms?

A second “infinite football team” that shows up wanting room?

The “rational number football team” that shows up wanting rooms?

The “real number football team” that shows up wanting rooms?
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Cardinality of the rationals

Suppose a bus containing the “positive rational number football team” shows up to Hilbert’s
hotel, which is empty.

How could the manager assign room numbers?

1/1

2/1

3/1

4/1

5/1

1/2

2/2

3/2

4/2

5/2

1/3

2/3

3/3

4/3

5/3

1/4

2/4

3/4

4/4

5/4

1/5

2/5

3/5

4/5

5/5

1/6

2/6

3/6

4/6

5/6

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
...

...

· · ·

· · ·

1 2 3 4 5 6 7 8 9 10 11
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Cantor’s diagonal argument

Theorem (Georg Cantor, 1891)

|R| > |Q|.

Proof

It suffices to show that |[0, 1)| > |N|.

For sake of contradiction, suppose that there was a bijection f : N→ [0, 1).

Let’s make a table of the numbers f (0), f (1), f (2), f (3), . . .
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There are infinitely many infinities

Theorem

For any set A, we have
∣∣2A∣∣ > |A|.

Proof

It suffices to show that there is no surjection f : A→ 2A.

Consider a function f : A→ 2A, and define

D =
{
a ∈ A | a 6∈ f (a)

}
∈ 2A.

Take any a ∈ A. We will show that f (a) 6= D, and so f is not onto.

Case 1. If a ∈ D, then by definition, a 6∈ f (a).

This means that f (a) 6= D, because D contains a but f (a) doesn’t.

Case 2. If a 6∈ D, then by definition, a ∈ f (a).

But this means that f (a) 6= D, because f (a) contains a but D doesn’t. �
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More fun facts

Definition

Define ℵ0 = |N|. A set S such that |S | = ℵ0 is said to be countably infinite. The term
countable (usually) means at most countably infinite.

If |S | > ℵ0, then S is uncountable.

The rational numbers can be “covered” with intervals whose total length is 1.

The set of real-valued functions is strictly larger than R. The latter’s cardinality is called
the continuum, denoted c.

To answer our question from the beginning of the lecture:

|2N+| = |N+| = |N| = |Z| = |Q| < |R| < |F|.

The question of whether there exists a set S with ℵ0 < |S | < c is called the continuum
hypothesis.

Results from Gödel and Paul Cohen have showed that the continuum hypothesis is
undecidable – it lies outside of the standard axioms of set theory!
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