Lecture 4.5: Cardinality and infinite sets

Matthew Macauley
Department of Mathematical Sciences Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Set cardinality

Question

What does it means for two sets X and Y to have the same size?

This is easy if the sets are finite. But what about the following sets:

- $2 \mathbb{N}^{+}$(positive even numbers)
- \mathbb{N}^{+}(positive integers)
- \mathbb{N} (non-negative integers)
- \mathbb{Z} (integers)
- \mathbb{Q} (rational numbers)
- \mathbb{R} (real numbers)
- $\mathcal{F}:=\{$ functions $f: \mathbb{R} \rightarrow \mathbb{R}\}$

Clearly,

$$
2 \mathbb{N}^{+} \subsetneq \mathbb{N}^{+} \subsetneq \mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R} \subsetneq \mathcal{F}
$$

(assuming we associate the constant functions with real numbers).
But do any of these have the same size, and if so, what does that mean?

Recall some definitions

Definition

Let $f: X \rightarrow Y$ be a function. Then

- f is injective, or $1-1$, if $f(x)=f(y)$ implies $x=y$.
- f is surjective, or onto, if $\forall y \in Y, \exists x \in X$ such that $f(x)=y$.
- f is bijective if it is both $1-1$ and onto.

The notation $f: X \hookrightarrow Y$ means f is $1-1$.
The notation $f: X \rightarrow Y$ means f is onto.
If $f: X \rightarrow Y$ is bijective, then there is a 1-1 correspondence between elements of X and Y.
When f is bijective, we can define its inverse function, $f^{-1}: Y \rightarrow X$.

Definition

Two sets X, Y have the same cardinality if there exists a bijection $f: X \rightarrow Y$.

Some "problems" with infinity

What do you think the following equations "should be"?

- $1+\infty=$
- $2 \cdot \infty=$
- $1 / \infty=$
- $\infty \cdot \infty=$
- $\infty / 1=$
- $\infty-\infty=$
- $0 / \infty=$
- $\infty-\frac{1}{4} \infty=$

Let's consider the following thought experiment.
Suppose Farmer A plants a seed every day, but every fourth day, a bird comes along and eats the seed he just planted.

Suppose Farmer B plants a seed every day, but every fourth day, a bird comes along and eats the first seed he planted.

Which farmer has more plants remaining "at the end of time"?

Hilbert's Hotel

Here's another thought experiment, proposed by David Hilbert in 1924.
Imagine a hotel that has infinitely rooms, but no vacancies. However, the manager is able to shuffle people around to open up a room, if needed.

1	2	3	4	5	6	7	8	9	10	11	

If the hotel is full, what can the manager do to accommodate:

- A single person who shows up wanting a room?
- 10 people who show up wanting rooms?
- An "infinite football team" that shows up wanting rooms?
- A second "infinite football team" that shows up wanting room?
- The "rational number football team" that shows up wanting rooms?
- The "real number football team" that shows up wanting rooms?

Cardinality of the rationals

Suppose a bus containing the "positive rational number football team" shows up to Hilbert's hotel, which is empty.

How could the manager assign room numbers?

$$
\begin{array}{lllllll}
5 / 1 & 5 / 2 & 5 / 3 & 5 / 4 & 5 / 5 & 5 / 6 & \cdots \\
4 / 1 & 4 / 2 & 4 / 3 & 4 / 4 & 4 / 5 & 4 / 6 & \cdots \\
3 / 1 & 3 / 2 & 3 / 3 & 3 / 4 & 3 / 5 & 3 / 6 & \cdots \\
2 / 1 & 2 / 2 & 2 / 3 & 2 / 4 & 2 / 5 & 2 / 6 & \cdots \\
1 / 1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & \cdots
\end{array}
$$

Cantor's diagonal argument

Theorem (Georg Cantor, 1891)
$|\mathbb{R}|>|\mathbb{Q}|$.

Proof

It suffices to show that $|[0,1)|>|\mathbb{N}|$.
For sake of contradiction, suppose that there was a bijection $f: \mathbb{N} \rightarrow[0,1)$.
Let's make a table of the numbers $f(0), f(1), f(2), f(3), \ldots$

There are infinitely many infinities

Theorem

For any set A, we have $\left|2^{A}\right|>|A|$.

Proof

It suffices to show that there is no surjection $f: A \rightarrow 2^{A}$.
Consider a function $f: A \rightarrow 2^{A}$, and define

$$
D=\{a \in A \mid a \notin f(a)\} \in 2^{A} .
$$

Take any $a \in A$. We will show that $f(a) \neq D$, and so f is not onto.
Case 1. If $a \in D$, then by definition, $a \notin f(a)$.
This means that $f(a) \neq D$, because D contains a but $f(a)$ doesn't.
Case 2. If $a \notin D$, then by definition, $a \in f(a)$.
But this means that $f(a) \neq D$, because $f(a)$ contains a but D doesn't.

More fun facts

Definition

Define $\aleph_{0}=|\mathbb{N}|$. A set S such that $|S|=\aleph_{0}$ is said to be countably infinite. The term countable (usually) means at most countably infinite.

If $|S|>\aleph_{0}$, then S is uncountable.

- The rational numbers can be "covered" with intervals whose total length is 1.
- The set of real-valued functions is strictly larger than \mathbb{R}. The latter's cardinality is called the continuum, denoted c.
- To answer our question from the beginning of the lecture:

$$
\left|2 \mathbb{N}^{+}\right|=\left|\mathbb{N}^{+}\right|=|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|<|\mathbb{R}|<|\mathcal{F}| .
$$

- The question of whether there exists a set S with $\aleph_{0}<|S|<c$ is called the continuum hypothesis.
- Results from Gödel and Paul Cohen have showed that the continuum hypothesis is undecidable - it lies outside of the standard axioms of set theory!

