
Lecture 5.2: Public-key cryptography and RSA

Matthew Macauley

Department of Mathematical Sciences
Clemson University

http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

M. Macauley (Clemson) Lecture 5.2: Public-key cryptography and RSA Discrete Mathematical Structures 1 / 8

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu


RSA: a different type of cryptosystem

The RSA cryptosystem was developed in 1978 by Ron Rivest, Adi Shamir, and Leonard
Adleman.

It allows two people to exchange messages “in plain sight”.

Suppose I want to send you a secret message, e.g., your midterm exam score.

For privacy reasons, I cannot just email it to you in plain text. What if somebody snoops?

Instead, you create a publicly available encryption function e(x).

I compute e(score), and email this to you.

You have secret information that allows you to easily compute the inverse (decryption)
function, d = e−1 : X → X .

However, for everybody else, this is basically impossible.

RSA is an example of a public-key cryptosystem, and these are widely used today.

All of these are characterized by an encryption function e : X → X that is easy to compute
but almost impossible to invert, unless you have the “secret key”.

Unlike the methods in the previous lecture, public-key systems are asymmetric cryptosystems.

M. Macauley (Clemson) Lecture 5.2: Public-key cryptography and RSA Discrete Mathematical Structures 2 / 8

mailto:macaule@clemson.edu


How RSA works

As the intended recipient of encrypted messages, you need to take the following steps:

1. Choose 2 (large) primes, e.g., p = 17, q = 19.

Normally, these would be several hundred digits in length.

2. Let n = pq = 17 · 19 = 323.

Factoring such a large n is basically impossible. Only you know p and q!

3. Let A = ϕ(n) = (p − 1)(q − 1) = 16 · 18 = 288.

Without knowing how to factor n, computing ϕ(n) is basically impossible.

4. Pick E < ϕ(n) such that gcd(E , ϕ(n)) = 1. [Let’s pick E = 95].

We’ll learn how to efficiently find such an E .

Your public key is (n,E) = (323, 95), and your (public) encryption function is

e(x) = xE (mod n),
[
e(x) = x95 (mod 323)

]
.

5. Compute your private key, D = E−1 (mod A), i.e., the solution to Ex ≡ 1 (mod A).

The decryption function, known only to you, is (modulo n)

d(y) = yD = (xE )D = xED ≡ x (mod n),
[
d(y) = y191 (mod 323)

]
.

M. Macauley (Clemson) Lecture 5.2: Public-key cryptography and RSA Discrete Mathematical Structures 3 / 8

mailto:macaule@clemson.edu


Example: How I can send you your exam score using RSA

You choose p = 17, q = 19, and publish your public key (n,E) = (323, 95).

You compute your private key D = E−1 = 191. (We’ll learn how to do this.)

I use your public encryption function to compute

e(score) = (score)95 ≡ 307 (mod 323),

I email you 307, and then you use your private key to decrypt this message:

d(y) = y191 (mod 323), d(307) = 307191 (mod 323)

≡ 86 (mod 323).

We need to learn how to do the following

1. Find E ∈ N such that gcd(E , ϕ(n)) = 1. [e.g., gcd(E , 288) = 1.]

Most systems use E = 65537.

2. Solve Ex ≡ 1 (mod ϕ(n)). [e.g., solve 95x ≡ 1 (mod 288).]

Extended Euclidean algorithm.

3. Compute xE and yD modulo n. [e.g., 8695 (mod n) and 307191 (mod n).]

“Fast modular exponentiation”, uses method of repeated squaring.

M. Macauley (Clemson) Lecture 5.2: Public-key cryptography and RSA Discrete Mathematical Structures 4 / 8

mailto:macaule@clemson.edu


1. How to find E such that gcd(E , ϕ(n)) = 1

In our example:
n = pq = 17 · 19 = 323, ϕ(n) = 16 · 18 = 288,

and as the message recipient, you needed to find E such that gcd(E , 288) = 1.

For small n, this is easy: factor 288 and pick a number with no common prime factors.

In practice, ϕ(n) is too large to factor. But any prime that does not divide
ϕ(n) = (p − 1)(q − 1) will work.

Guessing and checking will yield a prime rather quickly.

A particularly nice choice of E would be:

prime [makes it easier to verify that gcd(E , ϕ(n)) = 1],

of the form 2n + 1, because this is 1000 · · · 001 in binary.

The only primes of the form 2n + 1 also have the form 22k + 1, called Fermat primes.

The only known Fermat primes are 3, 5, 17, 257, 65537.

As such, in practice, E = 224
+ 1 = 65537 is usually used for encryption.

In the very slim chance that 65537 divides ϕ(n) = (p − 1)(q − 1), then go back and pick a
new p and q.

M. Macauley (Clemson) Lecture 5.2: Public-key cryptography and RSA Discrete Mathematical Structures 5 / 8

mailto:macaule@clemson.edu


2. How to solve Ex ≡ 1 (mod ϕ(n))

Recall that we can solve an equation such as Ex ≡ 1 (mod ϕ(n)) using the extended
Euclidean algorithm.

Let’s solve 95x ≡ 1 (mod 288).

288 95

288 = 1 · 288 + 0 · 95 1 0

95 = 0 · 288 + 1 · 95 0 1

288 = 95 · 3 + 3 3 = 1 · 288− 3 · 95 1 −3

95 = 3 · 31 + 2 2 = 1 · 95− 31 · 3 −31 94

3 = 2 · 1 + 1 1 = 1 · 3− 1 · 2 32 −97

We conclude that:
gcd(288, 95) = 1 = 288(32) + 95(−97).

From this, we can solve

95x ≡ 1 mod 288, =⇒ x = −97 ≡ 191 (mod 288).

The Euclidean algorithm takes at most 2 log2 x steps (rows).

So even for numbers x ≈ 10200, this is only ≤ 1329 steps.

M. Macauley (Clemson) Lecture 5.2: Public-key cryptography and RSA Discrete Mathematical Structures 6 / 8

mailto:macaule@clemson.edu


3. Computing xE and yD modulo n = pq.

Even for our small example, we encountered 307191 ≈ 1.101× 10475.

Though a computer can easily handle this, and reduce it modulo 323, this quickly becomes
unfeasible for yD when y ,D ≈ 10200.

If x =
⌊√

2 · 10185
⌋

and E =
⌊√

3 · 10180
⌋

, then computing xE requires over 10180

multiplications.

The universe is only ≈ 4.4× 1017 seconds old.

Goal

Compute xE (mod n) is at most 2 log2 E steps.

For the example above, this would require 2 log2 E ≈ 1198 steps.

M. Macauley (Clemson) Lecture 5.2: Public-key cryptography and RSA Discrete Mathematical Structures 7 / 8

mailto:macaule@clemson.edu


3. Fast modular exponentiation

Let’s compute 8695 (mod 323). First, we write the exponent in base 2:

95 = 1 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = 10111112.

Next, we can write

8695 = 8664+16+8+4+2+1 = 86648616868864862861.

Note that 862 ≡ 290 (mod 323), and successive powers are:

4. 864 = (862)2 ≡ 2902 ≡ 120 (mod 323),

8. 868 = (864)2 ≡ 1202 ≡ 188 (mod 323),

16. 8616 = (868)2 ≡ 1882 ≡ 137 (mod 323),

32. 8632 = (8616)2 ≡ 1372 ≡ 35 (mod 323),

64. 8664 = (8632)2 ≡ 352 ≡ 256 (mod 323),

8695 = 86648616868864862861 = 256 ·

=222︷ ︸︸ ︷
137 · 188 ·

=205︷ ︸︸ ︷
120 · 290 · 86︸ ︷︷ ︸

=69︸ ︷︷ ︸
=103

≡ 307 (mod 323).

This is called the method of repeated squaring, and requires at most 2 log2(E) steps. Clearly,
things are (slightly) easier using E = 65537 = 1000 · · · 00012.

M. Macauley (Clemson) Lecture 5.2: Public-key cryptography and RSA Discrete Mathematical Structures 8 / 8

mailto:macaule@clemson.edu

