
Lecture 5.3: Why RSA works

Matthew Macauley

Department of Mathematical Sciences
Clemson University

http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

M. Macauley (Clemson) Lecture 5.3: Why RSA works Discrete Mathematical Structures 1 / 9

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu


Generating large prime numbers

To implement RSA, we need to be able to generate large prime numbers.

In practice, this is basically done by “guess and check.” To see both why and how this
works, we’ll need a little bit of number theory.

Prime number theorem

The probability that a random number n is prime is approximately 1/(ln n), i.e.,

lim
n→∞

(
proportion of numbers ≤ n that are prime

)
−

1

ln n
= 0.

The chances of a random 9-digit number being prime is approx. 4% (i.e., 1 in 25). For a
200-digit number, this is approx. 0.2% (i.e., 1 in 500).

Heuristic for finding a large prime

while (true) {
let n be a random 200-digit number;

if (n is prime) \\ How to check this??

return n;

}
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Checking whether a large number is prime

The Fermat primality test is a probabilistic method to determine whether a number is
(“probably”) prime. It relies on the following result, which we’ll prove on the next slide.

Fermat’s little theorem

For any prime p and integer a,
ap ≡ a (mod p).

Without loss of generality, assume that a ∈ {0, 1, . . . , p − 1}. If a = 0, this trivially holds.

Otherwise, gcd(a, p) = 1. This means that a has a multiplicative inverse, modulo p.

Multiplying both sides by this inverse a−1 yields

ap−1 ≡ 1 (mod p).

We now have the following heuristic for testing for primes:

Fermat primality test

Given a number n ∈ N, compute an−1 (mod n) for many random values of a < n.

If an−1 6≡ 1 (mod n) for some a, then n must be composite.

If an−1 ≡ 1 (mod n) for every a that we try, then n is “probably prime”.
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Proof of Fermat’s little theorem

Fermat’s little theorem (restated)

For any prime p and integer a with gcd(a, p) = 1,

ap−1 ≡ 1 (mod p).

Proof

Assume without loss of generality that a ∈ {1, 2, . . . , p − 1}.

Consider the list of numbers
a, 2a, 3a, . . . , (p − 1)a.

Claim: No two of these are equivalent modulo p.

To see why, suppose that ka ≡ `a (mod p).

Multiplying by a−1 (mod p) yields k ≡ ` (mod p).

Thus,
a · 2a · 3a · · · (p − 1)a ≡ 1 · 2 · 3 · · · (p − 1) (mod p).

Rearranging terms, we get

ap−1(p − 1)! ≡ (p − 1)! (mod p) =⇒ ap−1 ≡ 1 (mod p).

�
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Fermat primality test

Fermat primality test (revisited)

Given a number n ∈ N, compute an−1 (mod n) for many random values of a < n.

If an−1 6≡ 1 (mod n), then n must be composite. We say a is a Fermat witness.

If an−1 ≡ 1 (mod n), there are two cases:

1. n is prime.

2. n is composite; a is called a Fermat liar.

Lemma

If a composite number n has a Fermat witness, then at least half of all numbers
a ∈ {1, 2, . . . , n − 1} that are relatively prime to n are Fermat witnesses.

Proof (sketch)

Consider a Fermat witness a and Fermat liar b for n. Then, modulo n,

(ab)n−1 = an−1︸ ︷︷ ︸
6≡1

· bn−1︸ ︷︷ ︸
≡1

≡ an−1 6≡ 1 (mod n).

In other words, every Fermat liar b has a corresponding Fermat witness ab. �
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Carmichael numbers

We just saw how if n has a Fermat witness, then it has many Fermat witnesses.

But. . . is it possible that n is composite, but has no Fermat witnesses?

Unfortunately, the answer is YES, but this is very rare.

Definition

A Carmichael number is a composite number n for which

an−1 ≡ 1 (mod n)

holds for all a = 1, . . . , n − 1 relatively prime to n.

The first few Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601, 8911, . . .

For 100-digit numbers, less than 1 in 1030 are Carmichael numbers. For 200-digit numbers,
the chances are even less.

Take-away message

If we randomly choose a 200-digit number n, and test ≈ 100 different values of a without
getting a Fermat witness, then we can be almost certain that n is prime.
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Fermat primality test

Algorithm

Input: Integer n > 0.

is composite = FALSE;

for (i = 1, . . . , 100) {

pick a random number ai relatively prime to n;

if (an−1
i 6≡ 1 (mod n)) \\ a_i is a Fermat witness

is composite = TRUE;

end;

}

if (is composite == FALSE)

print “chances that n is composite is less than 1 in 2100 ≈ 1030”;

else if (is composite == TRUE)

print “n is composite”;

Now that we know how to actually generate and compute with large primes, we can turn our
attention to why the RSA encryption and decryption functions actually work.
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Why RSA encryption and decryption work

Theorem

Let n = pq and ed ≡ 1 (mod (p − 1)(q − 1)).

Given a message m < n with gcd(m, n) = 1, set c = me (mod n). Then cd ≡ m (mod n).

Proof

Lemma. m(p−1)(q−1) ≡ 1 (mod n).

Proof. Since gcd(mq−1, p) = 1, Fermat’s little theorem says(
mq−1

)p−1 ≡ 1 (mod p).

Similarly, (
mp−1

)q−1 ≡ 1 (mod q).

Thus, for some k, ` ∈ Z,
m(p−1)(q−1) = 1 + kp = 1 + `q.

This means that m(p−1)(q−1) − 1 is a multiple of both p and q, and so

m(p−1)(q−1) − 1 = bpq, for some b ∈ Z,

completing the proof of the Lemma. X
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Why RSA encryption and decryption work

Theorem

Let n = pq and ed ≡ 1 (mod (p − 1)(q − 1)).

Given a message m < n with gcd(m, n) = 1, set c = me (mod n). Then cd ≡ m (mod n).

Proof

Lemma (established). m(p−1)(q−1) ≡ 1 (mod n).

We know cd ≡ med (mod n), and need to show cd ≡ m (mod n). Thus, it suffices to show

med ≡ m (mod n).

Note that ed ≡ 1 (mod (p − 1)(q − 1))⇔ ∃j ∈ Z such that ed = 1 + j(p − 1)(q − 1).

Now,

med = m1+j(p−1)(q−1) = m ·mj(p−1)(q−1) = m ·
(
m(p−1)(q−1)

)︸ ︷︷ ︸
≡1, by Lemma

j ≡ m (mod n).

�
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