
Homework 11 | Due June 9 (Tuesday) 1

Read Chapters 10.1–10.5 of Visual Group Theory or Chapters 20.1–20.2 of AATA. Then write
up solutions to the following exercises.

1. There is a unique finite field Fq of order q = pk for every prime p and positive integer k.
For all other q ∈ N, there is no finite field of order q. For each of the fields F4, F5, and F8,
the Cayley diagrams for addition and multiplication are shown below, overlayed on the
same set of nodes. The solid arrows are the Cayley diagrams for addition and the dashed
arrows are the Cayley diagrams for multiplication.
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(a) For each field above, determine whether or not the addition and multiplication oper-
ations are in fact, addition and multiplication modulo some number. If yes, relabel
the vertices accordingly. If no, explain why it fails.

(b) Create Cayley diagrams for the finite fields F3 and F7.

2. The field Q( 4
√

3, i) is called the splitting field of the polynomial f(x) = x4 − 3 over Q
because it is the smallest extension field of Q that contains all roots of f(x).

(a) Sketch the roots of f(x) = x4 − 3 in the complex plane. Write each one as a + bi,
where a, b ∈ R. Additionally, write each root in polar form: z = Reiθ.

(b) Find a basis for the extension field Q( 4
√

3) of Q and compute its dimension as a
Q-vector space. That is, find a minimal set of v1, . . . , vk ∈ Q( 4

√
3) such that every

x ∈ Q( 4
√

3) can be written as a unique linear combination of the vi’s.

(c) Is Q( 4
√

3) the splitting field of some polynomial g(x) over Q? If yes, find g(x). If no,
explain why not.

(d) Find a basis for Q( 4
√

3, i) := Q( 4
√

3)(i) = Q(i)( 4
√

3) over each of the fields Q( 4
√

3),
Q(i), and Q. What is its dimension as a vector space over each of these fields?

(e) Q( 4
√

3, i) is the splitting field of what polynomial over Q( 4
√

3)? And of what polyno-
mial over Q(i)?

3. Thus far in class, we have seen a number of algebraic extensions of Q, including:

Q(
√

2), Q(
√

3), Q(
√

6), Q(
√

2,
√

3), Q(i), Q(
√
−3, 3
√

2), Q( 4
√

3, i), Q( 4
√

3).

Arrange these fields in a subfield lattice, and include Q, R and C as well. Note that there
will be (many!) “missing” fields, so only include those listed above. For each edge in this
lattice, which corresponds to an extension field E ⊇ F , write the degree of the extension
of E over F , which by definition is the dimension of E as an F -vector-space.
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4. Consider the function

φ : Q(
√

2) −→ Q(
√

2) , φ(a+ b
√

2) = a− b
√

2 .

Show that φ is a field automorphism, meaning that it satisfies the following equations for
all α, β ∈ Q(

√
2):

φ(α + β) = φ(α) + φ(β) , φ(α · β) = φ(α) · φ(β) .

5. Consider the following extension field of Q:

K = Q(
√

2, i) = {a+ b
√

2 + ci+ d
√

2i | a, b, c, d ∈ Q} .

(a) Find the Galois group G = Gal(K) of K over Q. For each automorphism φ ∈ G,
write down where it sends the generators

√
2 and i, and then write down

φ(a+ b
√

2 + ci+ d
√

2i) .

(b) Write out a multiplication table for G, and a minimal generating set.

(c) Write down the subfield lattice of K and the subgroup lattice of G. Each subgroup
should be expressed by generators, rather than what subgroup it is isomorphic to.

(d) For each subgroup H ≤ G, determine the largest subfield of K that H fixes.

(e) For each subfield F ⊆ K, determine the largest subgroup of G that fixes F .
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