Section 7: Ring theory

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra
What is a ring?

Definition

A **ring** is an additive (abelian) group R with an additional binary operation (multiplication), satisfying the distributive law:

$$x(y + z) = xy + xz \quad \text{and} \quad (y + z)x = yx + zx \quad \forall x, y, z \in R.$$

Remarks

- There need not be multiplicative inverses.
- Multiplication need not be commutative (it may happen that $xy \neq yx$).

A few more terms

If $xy = yx$ for all $x, y \in R$, then R is **commutative**.

If R has a multiplicative identity $1 = 1_R \neq 0$, we say that “R has identity” or “unity”, or “R is a ring with 1.”

A **subring** of R is a subset $S \subseteq R$ that is also a ring.
What is a ring?

Examples

1. \(\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C} \) are all commutative rings with 1.

2. \(\mathbb{Z}_n \) is a commutative ring with 1.

3. For any ring \(R \) with 1, the set \(M_n(R) \) of \(n \times n \) matrices over \(R \) is a ring. It has identity \(1_{M_n(R)} = I_n \) iff \(R \) has 1.

4. For any ring \(R \), the set of functions \(F = \{ f : R \to R \} \) is a ring by defining

\[
(f + g)(r) = f(r) + g(r), \quad (fg)(r) = f(r)g(r).
\]

5. The set \(S = 2\mathbb{Z} \) is a subring of \(\mathbb{Z} \) but it does not have 1.

6. \(S = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \in \mathbb{R} \right\} \) is a subring of \(R = M_2(\mathbb{R}) \). However, note that

\[
1_R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \text{but} \quad 1_S = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.
\]

7. If \(R \) is a ring and \(x \) a variable, then the set

\[
R[x] = \{ a_nx^n + \cdots + a_1x + a_0 \mid a_i \in R \}
\]

is called the polynomial ring over \(R \).
Another example: the quaternions

Recall the (unit) quaternion group:

\[Q_8 = \langle i, j, k \mid i^2 = j^2 = k^2 = -1, \ ij = k \rangle. \]

Allowing addition makes them into a ring \(\mathbb{H} \), called the quaternions, or Hamiltonians:

\[\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}. \]

The set \(\mathbb{H} \) is isomorphic to a subring of \(M_4(\mathbb{R}) \), the real-valued \(4 \times 4 \) matrices:

\[
\mathbb{H} = \left\{ \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\} \subseteq M_4(\mathbb{R}).
\]

Formally, we have an embedding \(\phi : \mathbb{H} \hookrightarrow M_4(\mathbb{R}) \) where

\[
\phi(i) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \phi(j) = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \quad \phi(k) = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.
\]

We say that \(\mathbb{H} \) is represented by a set of matrices.
Units and zero divisors

Definition

Let R be a ring with 1. A **unit** is any $x \in R$ that has a multiplicative inverse. Let $U(R)$ be the set (a multiplicative group) of units of R.

An element $x \in R$ is a **left zero divisor** if $xy = 0$ for some $y \neq 0$. (Right zero divisors are defined analogously.)

Examples

1. Let $R = \mathbb{Z}$. The units are $U(R) = \{-1, 1\}$. There are no (nonzero) zero divisors.
2. Let $R = \mathbb{Z}_{10}$. Then 7 is a unit (and $7^{-1} = 3$) because $7 \cdot 3 = 1$. However, 2 is not a unit.
3. Let $R = \mathbb{Z}_n$. A nonzero $k \in \mathbb{Z}_n$ is a unit if $\gcd(n, k) = 1$, and a zero divisor if $\gcd(n, k) \geq 2$.
4. The ring $R = M_2(\mathbb{R})$ has zero divisors, such as:

\[
\begin{bmatrix}
1 & -2 \\
-2 & 4 \\
\end{bmatrix}
\begin{bmatrix}
6 & 2 \\
3 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

The groups of units of $M_2(\mathbb{R})$ are the **invertible matrices**.
Group rings

Let R be a commutative ring (usually, \mathbb{Z}, \mathbb{R}, or \mathbb{C}) and G a finite (multiplicative) group. We can define the group ring RG as

$$RG := \{ a_1 g_1 + \cdots + a_n g_n \mid a_i \in R, g_i \in G \} ,$$

where multiplication is defined in the “obvious” way.

For example, let $R = \mathbb{Z}$ and $G = D_4 = \langle r, f \mid r^4 = f^2 = rfrf = 1 \rangle$, and consider the elements $x = r + r^2 - 3f$ and $y = -5r^2 + rf$ in $\mathbb{Z}D_4$. Their sum is

$$x + y = r - 4r^2 - 3f + rf,$$

and their product is

$$xy = (r + r^2 - 3f)(-5r^2 + rf) = r(-5r^2 + rf) + r^2(-5r^2 + rf) - 3f(-5r^2 + rf)$$
$$= -5r^3 + r^2f - 5r^4 + r^3f + 15fr^2 - 3frf = -5 - 8r^3 + 16r^2f + r^3f.$$

Remarks

- The (real) Hamiltonians \mathbb{H} is not the same ring as $\mathbb{R}Q_8$.
- If $g \in G$ has finite order $|g| = k > 1$, then RG always has zero divisors:

$$ (1 - g)(1 + g + \cdots + g^{k-1}) = 1 - g^k = 1 - 1 = 0. $$

- RG contains a subring isomorphic to R, and the group of units $U(RG)$ contains a subgroup isomorphic to G.

Types of rings

Definition

If all nonzero elements of R have a multiplicative inverse, then R is a division ring. (Think: “field without commutativity”.)

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors. (Think: “field without inverses”.)

A field is just a commutative division ring. Moreover:

$$\text{fields} \subsetneq \text{division rings}$$

$$\text{fields} \subsetneq \text{integral domains} \subsetneq \text{all rings}$$

Examples

- Rings that are not integral domains: \mathbb{Z}_n (composite n), $2\mathbb{Z}$, $M_n(\mathbb{R})$, $\mathbb{Z} \times \mathbb{Z}$, \mathbb{H}.
- Integral domains that are not fields (or even division rings): \mathbb{Z}, $\mathbb{Z}[x]$, $\mathbb{R}[x]$, $\mathbb{R}[[x]]$ (formal power series).
- Division ring but not a field: \mathbb{H}.
Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation: \(ax = ay \implies x = y \). However, this need not hold in all rings!

Examples where cancellation fails

- In \(\mathbb{Z}_6 \), note that \(2 = 2 \cdot 1 = 2 \cdot 4 \), but \(1 \neq 4 \).

- In \(M_2(\mathbb{R}) \), note that \[
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}.
\]

However, everything works fine as long as there aren’t any (nonzero) zero divisors.

Proposition

Let \(R \) be an integral domain and \(a \neq 0 \). If \(ax = ay \) for some \(x, y \in R \), then \(x = y \).

Proof

If \(ax = ay \), then \(ax - ay = a(x - y) = 0 \).

Since \(a \neq 0 \) and \(R \) has no (nonzero) zero divisors, then \(x - y = 0 \). \(\square \)
Lemma (HW)

If R is an integral domain and $0 \neq a \in R$ and $k \in \mathbb{N}$, then $a^k \neq 0$. □

Theorem

Every finite integral domain is a field.

Proof

Suppose R is a finite integral domain and $0 \neq a \in R$. It suffices to show that a has a multiplicative inverse.

Consider the infinite sequence a, a^2, a^3, a^4, \ldots, which must repeat.

Find $i > j$ with $a^i = a^j$, which means that

$$0 = a^i - a^j = a^j(a^{i-j} - 1).$$

Since R is an integral domain and $a^j \neq 0$, then $a^{i-j} = 1$.

Thus, $a \cdot a^{i-j-1} = 1$. □
Ideals

In the theory of groups, we can quotient out by a subgroup if and only if it is a normal subgroup. The analogue of this for rings are (two-sided) ideals.

Definition

A subring $I \subseteq R$ is a **left ideal** if

$$rx \in I \text{ for all } r \in R \text{ and } x \in I.$$

Right ideals, and **two-sided ideals** are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term **ideal** and **two-sided ideal** synonymously, and write $I \trianglelefteq R$.

Examples

- $n\mathbb{Z} \trianglelefteq \mathbb{Z}$.

- If $R = M_2(\mathbb{R})$, then $I = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} : a, c \in \mathbb{R} \right\}$ is a left, but *not* a right ideal of R.

- The set $\text{Sym}_n(\mathbb{R})$ of symmetric $n \times n$ matrices is a subring of $M_n(\mathbb{R})$, but *not* an ideal.
Remark

If an ideal \(I \) of \(R \) contains 1, then \(I = R \).

Proof

Suppose \(1 \in I \), and take an arbitrary \(r \in R \).

Then \(r1 \in I \), and so \(r1 = r \in I \). Therefore, \(I = R \). \(\square \)

It is not hard to modify the above result to show that if \(I \) contains any unit, then \(I = R \). (HW)

Let’s compare the concept of a normal subgroup to that of an ideal:

- **normal subgroups** are characterized by being **invariant under conjugation**:

 \[
 H \leq G \text{ is normal iff } ghg^{-1} \in H \text{ for all } g \in G, \ h \in H.
 \]

- **(left) ideals** of rings are characterized by being **invariant under (left) multiplication**:

 \[
 I \subseteq R \text{ is a (left) ideal iff } ri \in I \text{ for all } r \in R, \ i \in I.
 \]
Ideals generated by sets

Definition

The left ideal generated by a set \(X \subset R \) is defined as:

\[
(X) := \bigcap \{ I : I \text{ is a left ideal s.t. } X \subseteq I \subseteq R \}.
\]

This is the smallest left ideal containing \(X \).

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup \(\langle X \rangle \) generated by a subset \(X \subset G \):

- **“Bottom up”**: As the set of all finite products of elements in \(X \);
- **“Top down”**: As the intersection of all subgroups containing \(X \).

Proposition (HW)

Let \(R \) be a ring with unity. The (left, right, two-sided) ideal generated by \(X \subset R \) is:

- **Left**: \(\{ r_1x_1 + \cdots + r_nx_n : n \in \mathbb{N}, r_i \in R, x_i \in X \} \),
- **Right**: \(\{ x_1r_1 + \cdots + x_nr_n : n \in \mathbb{N}, r_i \in R, x_i \in X \} \),
- **Two-sided**: \(\{ r_1x_1s_1 + \cdots + r_nx_ns_n : n \in \mathbb{N}, r_i, s_i \in R, x_i \in X \} \).
Ideals and quotients
Since an ideal \(I \) of \(R \) is an additive subgroup (and hence normal), then:

- \(R/I = \{ x + I \mid x \in R \} \) is the set of cosets of \(I \) in \(R \);
- \(R/I \) is a quotient group; with the binary operation (addition) defined as
 \[
 (x + I) + (y + I) := x + y + I.
 \]

It turns out that if \(I \) is also a two-sided ideal, then we can make \(R/I \) into a ring.

Proposition
If \(I \subseteq R \) is a (two-sided) ideal, then \(R/I \) is a ring (called a quotient ring), where multiplication is defined by

\[
(x + I)(y + I) := xy + I.
\]

Proof
We need to show this is well-defined. Suppose \(x + I = r + I \) and \(y + I = s + I \). This means that \(x - r \in I \) and \(y - s \in I \).

It suffices to show that \(xy + I = rs + I \), or equivalently, \(xy - rs \in I \):

\[
xy - rs = xy - ry + ry - rs = (x - r)y + r(y - s) \in I.
\]
Finite fields

We’ve already seen that \(\mathbb{Z}_p \) is a field if \(p \) is prime, and that finite integral domains are fields. But what do these “other” finite fields look like?

Let \(R = \mathbb{Z}_2[x] \) be the polynomial ring over the field \(\mathbb{Z}_2 \). (Note: we can ignore all negative signs.)

The polynomial \(f(x) = x^2 + x + 1 \) is irreducible over \(\mathbb{Z}_2 \) because it does not have a root. (Note that \(f(0) = f(1) = 1 \neq 0 \).

Consider the ideal \(I = (x^2 + x + 1) \), the set of multiples of \(x^2 + x + 1 \).

In the quotient ring \(R/I \), we have the relation \(x^2 + x + 1 = 0 \), or equivalently, \(x^2 = -x - 1 = x + 1 \).

The quotient has only 4 elements:

\[
0 + I, \quad 1 + I, \quad x + I, \quad (x + 1) + I.
\]

As with the quotient group (or ring) \(\mathbb{Z}/n\mathbb{Z} \), we usually drop the “\(I \)”, and just write

\[
R/I = \mathbb{Z}_2[x]/(x^2 + x + 1) \cong \{0, 1, x, x + 1\}.
\]

It is easy to check that this is a field!
Finite fields

Here is a Cayley diagram, and the operation tables for $R/I = \mathbb{Z}_2[x]/(x^2 + x + 1)$:

\[
\begin{array}{c@{\ldots}c@{\ldots}c@{\ldots}c@{\ldots}c@{\ldots}c@{\ldots}c@{\ldots}c}
0 & 1 & x & x+1 \\
0 & 0 & 1 & x & x+1 \\
1 & 1 & 0 & x+1 & x \\
x & x & x+1 & 0 & 1 \\
x+1 & x+1 & x & 1 & 0 \\
x+1 & x+1 & 1 & x & x
\end{array}
\]

Theorem

There exists a finite field \mathbb{F}_q of order q, which is unique up to isomorphism, iff $q = p^n$ for some prime p. If $n > 1$, then this field is isomorphic to the quotient ring

\[\mathbb{Z}_p[x]/(f),\]

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics over $\mathbb{F}_{2^8} = \mathbb{F}_{256}$. This is what allows your CD to play despite scratches.
Motivation (spoilers!)
Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory
- The quotient group G/N exists iff N is a normal subgroup.
- A homomorphism is a structure-preserving map: $f(x \ast y) = f(x) \ast f(y)$.
- The kernel of a homomorphism is a normal subgroup: Ker $\phi \trianglelefteq G$.
- For every normal subgroup $N \trianglelefteq G$, there is a natural quotient homomorphism $\phi: G \to G/N$, $\phi(g) = gN$.
- There are four standard isomorphism theorems for groups.

Ring theory
- The quotient ring R/I exists iff I is a two-sided ideal.
- A homomorphism is a structure-preserving map: $f(x + y) = f(x) + f(y)$ and $f(xy) = f(x)f(y)$.
- The kernel of a homomorphism is a two-sided ideal: Ker $\phi \trianglelefteq R$.
- For every two-sided ideal $I \trianglelefteq R$, there is a natural quotient homomorphism $\phi: R \to R/I$, $\phi(r) = r + I$.
- There are four standard isomorphism theorems for rings.
Ring homomorphisms

Definition

A **ring homomorphism** is a function $f : R \to S$ satisfying

$$f(x + y) = f(x) + f(y) \quad \text{and} \quad f(xy) = f(x)f(y)$$

for all $x, y \in R$.

A **ring isomorphism** is a homomorphism that is bijective.

The **kernel** $f : R \to S$ is the set $\text{Ker } f := \{x \in R : f(x) = 0\}$.

Examples

1. The function $\phi : \mathbb{Z} \to \mathbb{Z}_n$ that sends $k \mapsto k \pmod{n}$ is a ring homomorphism with $\text{Ker}(\phi) = n\mathbb{Z}$.

2. For a fixed real number $\alpha \in \mathbb{R}$, the “evaluation function”

$$\phi : \mathbb{R}[x] \longrightarrow \mathbb{R}, \quad \phi : p(x) \longmapsto p(\alpha)$$

is a homomorphism. The kernel consists of all polynomials that have α as a root.

3. The following is a homomorphism, for the ideal $I = (x^2 + x + 1)$ in $\mathbb{Z}_2[x]$:

$$\phi : \mathbb{Z}_2[x] \longrightarrow \mathbb{Z}_2[x]/I, \quad f(x) \longmapsto f(x) + I$$
The isomorphism theorems for rings

Fundamental homomorphism theorem

If \(\phi : R \to S \) is a ring homomorphism, then Ker \(\phi \) is an ideal and \(\text{Im}(\phi) \cong R / \text{Ker}(\phi) \).

Proof (HW)

The statement holds for the underlying additive group \(R \). Thus, it remains to show that Ker \(\phi \) is a (two-sided) ideal, and the following map is a ring homomorphism:

\[
g : R/I \to \text{Im} \phi, \quad g(x + I) = \phi(x).
\]
The second isomorphism theorem for rings

Suppose S is a subring and I an ideal of R. Then

(i) The sum $S + I = \{s + i \mid s \in S, \ i \in I\}$ is a subring of R and the intersection $S \cap I$ is an ideal of S.

(ii) The following quotient rings are isomorphic:

$$(S + I)/I \cong S/(S \cap I).$$

Proof (sketch)

$S + I$ is an additive subgroup, and it’s closed under multiplication because

$$s_1, s_2 \in S, \ i_1, i_2 \in I \quad \Longrightarrow \quad (s_1 + i_1)(s_2 + i_2) = \underbrace{s_1 s_2 + s_1 i_2}_{\in S} + \underbrace{i_1 s_2 + i_1 i_2}_{\in I} \in S + I.$$

Showing $S \cap I$ is an ideal of S is straightforward (homework exercise).

We already know that $(S + I)/I \cong S/(S \cap I)$ as additive groups.

One explicit isomorphism is $\phi: s + (S \cap I) \mapsto s + I$. It is easy to check that $\phi: 1 \mapsto 1$ and ϕ preserves products.
The third isomorphism theorem for rings

Freshman theorem

Suppose R is a ring with ideals $J \subseteq I$. Then I/J is an ideal of R/J and

$$(R/J)/(I/J) \cong R/I.$$

(Thanks to Zach Teitler of Boise State for the concept and graphic!)
The fourth isomorphism theorem for rings

Correspondence theorem

Let I be an ideal of R. There is a bijective correspondence between subrings (& ideals) of R/I and subrings (& ideals) of R that contain I. In particular, every ideal of R/I has the form J/I, for some ideal J satisfying $I \subseteq J \subseteq R$.

subrings & ideals that contain I

subrings & ideals of R/I
Maximal ideals

Definition
An ideal I of R is **maximal** if $I \neq R$ and if $I \subseteq J \subseteq R$ holds for some ideal J, then $J = I$ or $J = R$.

A ring R is **simple** if its only (two-sided) ideals are 0 and R.

Examples

1. If $n \neq 0$, then the ideal $M = (n)$ of $R = \mathbb{Z}$ is maximal if and only if n is prime.

2. Let $R = \mathbb{Q}[x]$ be the set of all polynomials over \mathbb{Q}. The ideal $M = (x)$ consisting of all polynomials with constant term zero is a maximal ideal.

 Elements in the quotient ring $\mathbb{Q}[x]/(x)$ have the form $f(x) + M = a_0 + M$.

3. Let $R = \mathbb{Z}_2[x]$, the polynomials over \mathbb{Z}_2. The ideal $M = (x^2 + x + 1)$ is maximal, and $R/M \cong \mathbb{F}_4$, the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.
Maximal ideals

Theorem

Let R be a commutative ring with 1. The following are equivalent for an ideal $I \subseteq R$.

(i) I is a maximal ideal;
(ii) R/I is simple;
(iii) R/I is a field.

Proof

The equivalence (i)\iff(ii) is immediate from the Correspondence Theorem.

For (ii)\iff(iii), we’ll show that an arbitrary ring R is simple iff R is a field.

\Rightarrow: Assume R is simple. Then $(a) = R$ for any nonzero $a \in R$.
Thus, $1 \in (a)$, so $1 = ba$ for some $b \in R$, so $a \in U(R)$ and R is a field. ✓

\Leftarrow: Let $I \subseteq R$ be a nonzero ideal of a field R. Take any nonzero $a \in I$.
Then $a^{-1}a \in I$, and so $1 \in I$, which means $I = R$. ✓
Prime ideals

Definition

Let R be a commutative ring. An ideal $P \subseteq R$ is prime if $ab \in P$ implies either $a \in P$ or $b \in P$.

Note that $p \in \mathbb{N}$ is a prime number iff $p = ab$ implies either $a = p$ or $b = p$.

Examples

1. The ideal (n) of \mathbb{Z} is a prime ideal iff n is a prime number (possibly $n = 0$).
2. In the polynomial ring $\mathbb{Z}[x]$, the ideal $I = (2, x)$ is a prime ideal. It consists of all polynomials whose constant coefficient is even.

Theorem

An ideal $P \subseteq R$ is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is immediate:

Corollary

In a commutative ring, every maximal ideal is prime.
Divisibility and factorization

A ring is in some sense, a generalization of the familiar number systems like \mathbb{Z}, \mathbb{R}, and \mathbb{C}, where we are allowed to add, subtract, and multiply.

Two key properties about these structures are:

- multiplication is commutative,
- there are no (nonzero) zero divisors.

Blanket assumption

Throughout this lecture, unless explicitly mentioned otherwise, R is assumed to be an integral domain, and we will define $R^* := R \setminus \{0\}$.

The integers have several basic properties that we usually take for granted:

- every nonzero number can be factored uniquely into primes;
- any two numbers have a unique greatest common divisor and least common multiple;
- there is a Euclidean algorithm, which can find the gcd of two numbers.

Surprisingly, these need not always hold in integrals domains! We would like to understand this better.
Divisibility

Definition
If \(a, b \in R \), say that \(a \) divides \(b \), or \(b \) is a multiple of \(a \) if \(b = ac \) for some \(c \in R \). We write \(a \mid b \).

If \(a \mid b \) and \(b \mid a \), then \(a \) and \(b \) are associates, written \(a \sim b \).

Examples
- In \(\mathbb{Z} \): \(n \) and \(-n \) are associates.
- In \(\mathbb{R}[x] \): \(f(x) \) and \(c \cdot f(x) \) are associates for any \(c \neq 0 \).
- The only associate of \(0 \) is itself.
- The associates of \(1 \) are the units of \(R \).

Proposition (HW)
Two elements \(a, b \in R \) are associates if and only if \(a = bu \) for some unit \(u \in U(R) \).

This defines an equivalence relation on \(R \), and partitions \(R \) into equivalence classes.
Irreducibles and primes

Note that units divide everything: if \(b \in R \) and \(u \in U(R) \), then \(u \mid b \).

Definition

If \(b \in R \) is not a unit, and the only divisors of \(b \) are units and associates of \(b \), then \(b \) is irreducible.

An element \(p \in R \) is prime if \(p \) is not a unit, and \(p \mid ab \) implies \(p \mid a \) or \(p \mid b \).

Proposition

If \(0 \neq p \in R \) is prime, then \(p \) is irreducible.

Proof

Suppose \(p \) is prime but not irreducible. Then \(p = ab \) with \(a, b \not\in U(R) \).

Then (wlog) \(p \mid a \), so \(a = pc \) for some \(c \in R \). Now,

\[
p = ab = (pc)b = p(cb).
\]

This means that \(cb = 1 \), and thus \(b \in U(R) \), a contradiction. \(\square \)
Irreducibles and primes

Caveat: Irreducible \(\not\Rightarrow \) prime

Consider the ring \(R_{-5} := \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\} \).

\[
3 \mid (2 + \sqrt{-5})(2 - \sqrt{-5}) = 9 = 3 \cdot 3,
\]

but \(3 \nmid 2 + \sqrt{-5} \) and \(3 \nmid 2 - \sqrt{-5} \).

Thus, 3 is irreducible in \(R_{-5} \) but *not* prime.

When irreducibles fail to be prime, we can lose nice properties like unique factorization.

Things can get really bad: not even the *lengths* of factorizations into irreducibles need be the same!

For example, consider the ring \(R = \mathbb{Z}[x^2, x^3] \). Then

\[
x^6 = x^2 \cdot x^2 \cdot x^2 = x^3 \cdot x^3.
\]

The element \(x^2 \in R \) is not prime because \(x^2 \mid x^3 \cdot x^3 \) yet \(x^2 \nmid x^3 \) in \(R \) (note: \(x \notin R \)).
Principal ideal domains

Fortunately, there is a type of ring where such “bad things” don't happen.

Definition

An ideal \(I \) generated by a single element \(a \in R \) is called a principal ideal. We denote this by \(I = (a) \).

If every ideal of \(R \) is principal, then \(R \) is a principal ideal domain (PID).

Examples

The following are all PIDs (stated without proof):
- The ring of integers, \(\mathbb{Z} \).
- Any field \(F \).
- The polynomial ring \(F[x] \) over a field.

As we will see shortly, PIDs are “nice” rings. Here are some properties they enjoy:
- pairs of elements have a “greatest common divisor” & “least common multiple”;
- irreducible \(\Rightarrow \) prime;
- Every element factors uniquely into primes.
Proposition

If \(I \subseteq \mathbb{Z} \) is an ideal, and \(a \in I \) is its smallest positive element, then \(I = (a) \).

Proof

Pick any positive \(b \in I \). Write \(b = aq + r \), for \(q, r \in \mathbb{Z} \) and \(0 \leq r < a \).

Then \(r = b - aq \in I \), so \(r = 0 \). Therefore, \(b = qa \in (a) \). \(\square \)

Definition

A common divisor of \(a, b \in R \) is an element \(d \in R \) such that \(d \mid a \) and \(d \mid b \).

Moreover, \(d \) is a greatest common divisor (GCD) if \(c \mid d \) for all other common divisors \(c \) of \(a \) and \(b \).

A common multiple of \(a, b \in R \) is an element \(m \in R \) such that \(a \mid m \) and \(b \mid m \).

Moreover, \(m \) is a least common multiple (LCM) if \(m \mid n \) for all other common multiples \(n \) of \(a \) and \(b \).
Nice properties of PIDs

Proposition

If R is a PID, then any $a, b \in R^*$ have a GCD, $d = \gcd(a, b)$. It is unique up to associates, and can be written as $d = xa + yb$ for some $x, y \in R$.

Proof

Existence. The ideal generated by a and b is

$$I = (a, b) = \{ua + vb : u, v \in R\}.$$

Since R is a PID, we can write $I = (d)$ for some $d \in I$, and so $d = xa + yb$.

Since $a, b \in (d)$, both $d \mid a$ and $d \mid b$ hold.

If c is a divisor of $a \& b$, then $c \mid xa + yb = d$, so d is a GCD for a and b. ✓

Uniqueness. If d' is another GCD, then $d \mid d'$ and $d' \mid d$, so $d \sim d'$.

✓
Corollary
If \(R \) is a PID, then every irreducible element is prime.

Proof
Let \(p \in R \) be irreducible and suppose \(p \mid ab \) for some \(a, b \in R \).

If \(p \nmid a \), then \(\gcd(p, a) = 1 \), so we may write \(1 = xa + yp \) for some \(x, y \in R \). Thus
\[
b = (xa + yp)b = x(ab) + (yb)p.
\]
Since \(p \mid x(ab) \) and \(p \mid (yb)p \), then \(p \mid x(ab) + (yb)p = b \). \(\square \)

Not surprisingly, least common multiples also have a nice characterization in PIDs.

Proposition (HW)
If \(R \) is a PID, then any \(a, b \in R^* \) have an LCM, \(m = \text{lcm}(a, b) \).
It is unique up to associates, and can be characterized as a generator of the ideal \(I := (a) \cap (b) \).
Unique factorization domains

Definition

An integral domain is a **unique factorization domain (UFD)** if:

(i) Every nonzero element is a product of irreducible elements;

(ii) Every irreducible element is prime.

Examples

1. \(\mathbb{Z} \) is a UFD: Every integer \(n \in \mathbb{Z} \) can be uniquely factored as a product of irreducibles (primes):
 \[
 n = p_1^{d_1} p_2^{d_2} \cdots p_k^{d_k}.
 \]
 This is the *fundamental theorem of arithmetic*.

2. The ring \(\mathbb{Z}[x] \) is a UFD, because every polynomial can be factored into irreducibles. But it is not a PID because the following ideal is not principal:
 \[
 (2, x) = \{ f(x) : \text{the constant term is even} \}.
 \]

3. The ring \(R_{-5} \) is **not** a UFD because 9 = 3 · 3 = (2 + \sqrt{-5})(2 - \sqrt{-5}).

4. We’ve shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.
Unique factorization domains

Theorem

If R is a PID, then R is a UFD.

Proof

We need to show Condition (i) holds: every element is a product of irreducibles. A ring is **Noetherian** if every ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

stabilizes, meaning that $I_k = I_{k+1} = I_{k+2} = \cdots$ holds for some k.

Suppose R is a PID. It is not hard to show that R is Noetherian (HW). Define

$$X = \{a \in R^* \setminus U(R) : a \text{ can’t be written as a product of irreducibles}\}.$$

If $X \neq \emptyset$, then pick $a_1 \in X$. Factor this as $a_1 = a_2 b$, where $a_2 \in X$ and $b \notin U(R)$. Then $(a_1) \subsetneq (a_2) \subsetneq R$, and repeat this process. We get an ascending chain

$$(a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$$

that does not stabilize. This is impossible in a PID, so $X = \emptyset$. □
Summary of ring types

- All rings: R^G and $M_n(\mathbb{R})$
- Commutative rings: $\mathbb{Z} \times \mathbb{Z}$, \mathbb{Z}_6, $\mathbb{Z}[x^2, x^3]$, R_{-5}, $2\mathbb{Z}$
- Integral domains: $F[x, y]$, $\mathbb{Z}[x]$
- UFDs: $F[x]$, \mathbb{Z}
- PIDs: \mathbb{Z}_p, $\mathbb{Z}_2[x]/(x^2 + x + 1)$, \mathbb{R}, \mathbb{A}, F_{256}
- Fields: \mathbb{C}, \mathbb{Q}, $\mathbb{Q}(\sqrt{-\pi})$, $\mathbb{Q}(\sqrt{m})$, $\mathbb{Q}(\sqrt[3]{2}, \zeta)$
The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the *Elements*, in which he described what is now known as the Euclidean algorithm:

Proposition VII.2 (Euclid’s *Elements*)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

- If $a \mid b$, then $\gcd(a, b) = a$;
- If $a = bq + r$, then $\gcd(a, b) = \gcd(b, r)$.

This is best seen by an example: Let $a = 654$ and $b = 360$.

\[
\begin{align*}
654 &= 360 \cdot 1 + 294 & \gcd(654, 360) &= \gcd(360, 294) \\
360 &= 294 \cdot 1 + 66 & \gcd(360, 294) &= \gcd(294, 66) \\
294 &= 66 \cdot 4 + 30 & \gcd(294, 66) &= \gcd(66, 30) \\
66 &= 30 \cdot 2 + 6 & \gcd(66, 30) &= \gcd(30, 6) \\
30 &= 6 \cdot 5 & \gcd(30, 6) &= 6.
\end{align*}
\]

We conclude that $\gcd(654, 360) = 6$.
Euclidean domains

Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm still works.

Definition

An integral domain \(R \) is Euclidean if it has a degree function \(d : R^* \to \mathbb{Z} \) satisfying:

(i) **non-negativity**: \(d(r) \geq 0 \quad \forall r \in R^* \).

(ii) **monotonicity**: \(d(a) \leq d(ab) \) for all \(a, b \in R^* \).

(iii) **division-with-remainder property**: For all \(a, b \in R \), \(b \neq 0 \), there are \(q, r \in R \) such that

\[
a = bq + r \quad \text{with} \quad r = 0 \text{ or } d(r) < d(b).\]

Note that Property (ii) could be restated to say: *If \(a \mid b \), then \(d(a) \leq d(b) \);*

Examples

- \(R = \mathbb{Z} \) is Euclidean. Define \(d(r) = |r| \).
- \(R = F[x] \) is Euclidean if \(F \) is a field. Define \(d(f(x)) = \deg f(x) \).
- The **Gaussian integers** \(R_{-1} = \mathbb{Z}[\sqrt{-1}] = \{ a + bi : a, b \in \mathbb{Z} \} \) is Euclidean with degree function \(d(a + bi) = a^2 + b^2 \).
Euclidean domains

Proposition

If R is Euclidean, then $U(R) = \{ x \in R^* : d(x) = d(1) \}$.

Proof

\subseteq: First, we’ll show that associates have the same degree. Take $a \sim b$ in R^*:

\[
\begin{align*}
a | b & \implies d(a) \leq d(b) \\
b | a & \implies d(b) \leq d(a) \\
\end{align*}
\]

$\implies d(a) = d(b)$.

If $u \in U(R)$, then $u \sim 1$, and so $d(u) = d(1)$. √

\supseteq: Suppose $x \in R^*$ and $d(x) = d(1)$.

Then $1 = qx + r$ for some $q \in R$ with either $r = 0$ or $d(r) < d(x) = d(1)$.

If $r \neq 0$, then $d(1) \leq d(r)$ since $1 | r$.

Thus, $r = 0$, and so $qx = 1$, hence $x \in U(R)$. √
Euclidean domains

Proposition
If R is Euclidean, then R is a PID.

Proof
Let $I \neq 0$ be an ideal and pick some $b \in I$ with $d(b)$ minimal.

Pick $a \in I$, and write $a = bq + r$ with either $r = 0$, or $d(r) < d(b)$.

This latter case is impossible: $r = a - bq \in I$, and by minimality, $d(b) \leq d(r)$.

Therefore, $r = 0$, which means $a = bq \in (b)$. Since a was arbitrary, $I = (b)$. \qed

Exercises.

(i) The ideal $I = (3, 2 + \sqrt{-5})$ is not principal in R_{-5}.
(ii) If R is an integral domain, then $I = (x, y)$ is not principal in $R[x, y]$.

Corollary
The rings R_{-5} (not a PID or UFD) and $R[x, y]$ (not a PID) are not Euclidean.
Algebraic integers

The algebraic integers are the roots of monic polynomials in \(\mathbb{Z}[x] \). This is a subring of the algebraic numbers (roots of all polynomials in \(\mathbb{Z}[x] \)).

Assume \(m \in \mathbb{Z} \) is square-free with \(m \neq 0,1 \). Recall the quadratic field

\[
\mathbb{Q}(\sqrt{m}) = \{ p + q\sqrt{m} \mid p, q \in \mathbb{Q} \}.
\]

Definition

The ring \(R_m \) is the set of algebraic integers in \(\mathbb{Q}(\sqrt{m}) \), i.e., the subring consisting of those numbers that are roots of monic quadratic polynomials \(x^2 + cx + d \in \mathbb{Z}[x] \).

Facts

- \(R_m \) is an integral domain with 1.
- Since \(m \) is square-free, \(m \equiv 0 \pmod{4} \). For the other three cases:

\[
R_m = \begin{cases}
\mathbb{Z}[\sqrt{m}] = \{ a + b\sqrt{m} : a, b \in \mathbb{Z} \} & m \equiv 2 \text{ or } 3 \pmod{4} \\
\mathbb{Z}\left[\frac{1+\sqrt{m}}{2}\right] = \{ a + b\left(\frac{1+\sqrt{m}}{2}\right) : a, b \in \mathbb{Z} \} & m \equiv 1 \pmod{4}
\end{cases}
\]

- \(R_{-1} \) is the Gaussian integers, which is a PID. (easy)
- \(R_{-19} \) is a PID. (hard)
Algebraic integers

Definition

For \(x = r + s\sqrt{m} \in \mathbb{Q}(\sqrt{m}) \), define the **norm** of \(x \) to be

\[
N(x) = (r + s\sqrt{m})(r - s\sqrt{m}) = r^2 - ms^2.
\]

\(R_m \) is **norm-Euclidean** if it is a Euclidean domain with \(d(x) = |N(x)| \).

Note that the norm is multiplicative: \(N(xy) = N(x)N(y) \).

Exercises

Assume \(m \in \mathbb{Z} \) is square-free, with \(m \neq 0, 1 \).
- \(u \in U(R_m) \) iff \(|N(u)| = 1 \).
- If \(m \geq 2 \), then \(U(R_m) \) is infinite.
- \(U(R_{-1}) = \{\pm 1, \pm i\} \) and \(U(R_{-3}) = \{\pm 1, \pm \frac{1\pm\sqrt{-3}}{2}\} \).
- If \(m = -2 \) or \(m < -3 \), then \(U(R_m) = \{\pm 1\} \).
Euclidean domains and algebraic integers

Theorem

R_m is norm-Euclidean iff

$$m \in \{-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}.$$

Theorem (D.A. Clark, 1994)

The ring R_{69} is a Euclidean domain that is *not* norm-Euclidean.

Let $\alpha = (1 + \sqrt{69})/2$ and $c > 25$ be an integer. Then the following degree function works for R_{69}, defined on the prime elements:

$$d(p) = \begin{cases} |N(p)| & \text{if } p \neq 10 + 3\alpha \\ c & \text{if } p = 10 + 3\alpha \end{cases}$$

Theorem

If $m < 0$ and $m \not\in \{-11, -7, -3, -2, -1\}$, then R_m is not Euclidean.

Open problem

Classify which R_m’s are PIDs, and which are Euclidean.
Theorem

If \(m < 0 \), then \(R_m \) is a PID iff

\[
m \in \{-1, -2, -3, -7, -11, -19, -43, -67, -163\}.
\]

Recall that \(R_m \) is norm-Euclidean iff

\[
m \in \{-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}.
\]

Corollary

If \(m < 0 \), then \(R_m \) is a PID that is not Euclidean iff \(m \in \{-19, -43, -67, -163\} \).
Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the leading term: red = 1 (algebraic integer), green = 2, blue = 3, yellow = 4. Large dots mean fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks).
Algebraic integers

Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic polynomial of degree ≤ 7 with coefficients from $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$. From Wikipedia.
Summary of ring types

- **All rings**
- **Commutative rings**
- **Integral domains**
- **Unique factorization domains (UFDs)**
- **Principal ideal domains (PIDs)**
- **Euclidean domains**
- **Fields**

- **Rings**: $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}[x^2, x^3]$, $\mathbb{Z}[x]$, \mathbb{Z}_p, \mathbb{Q}, \mathbb{F}_p^n, $\mathbb{R}(\sqrt{-\pi}, i)$, $\mathbb{Q}(\sqrt{m})$
- **Matrix rings**: $M_n(\mathbb{R})$
- **Polynomials**: $F[x, y]$, $\mathbb{Z}[x]$
- **Polynomial rings**: $\mathbb{R}[x]$, $\mathbb{Z}[-5]$
- **Special rings**: R_{-43}, R_{-67}, R_{-19}, R_{-69}, R_{-163}, \mathbb{H}