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Motivation

Consider the theorem:
a, a→ b, b → c, . . . , y → z ⇒ z.

A truth table will have 226 entries. At 1 million cases/sec, it will take 1 hour to verify this.

Now, consider the theorem:

p1, p1 → p2, p2 → p3, . . . , p99 → p100 ⇒ p100.

A truth table will have 2100 ≈ 1.27× 1030 entries. At 1 millions cases/sec, it will take
1.47× 1014 days to check.

Figure: The observable universe is approximately 5 × 1012 days old.

Clearly, we need alternate methods of proofs.
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Direct proof

Theorem 1
p → r , q → s, p ∨ q ⇒ s ∨ r .

Proof

Step Proposition Justification
1. p ∨ q Premise
2. ¬p → q (1), conditional rule [p → q ⇔ ¬p ∨ q]
3. q → s Premise
4. ¬p → s (2), (3), transitivity
5. ¬s → p (4), contrapositive
6. p → r Premise
7. ¬s → r (5), (6), transitivity
8. s ∨ r (7), conditional rule �
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Direct proof

Theorem 2
¬p ∨ q, s ∨ p, ¬q ⇒ s.

Proof 1

Step Proposition Justification
1. ¬p ∨ q Premise
2. ¬q Premise
3. ¬p (1), (2), disjunctive simplification
4. s ∨ p Premise
5. s (3), (4), disjunctive simplification �

Proof 2

Step Proposition Justification
1. ¬p ∨ q Premise
2. p → q (1), conditional rule
3. ¬q → ¬p (2), contrapositive
4. s ∨ p Premise
5. p ∨ s Commutativity
6. ¬p → s (5), conditional rule
7. ¬q → s (3), (6), transitivity
8. ¬q Premise
9. s (7), (8) modus ponens �
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Direct proof

The conclusion of a theorem is often a conditional proosition.

In this case, the condition of the conclusion can be included as an added premise in the
proof.

This rule is justified by the logical law

p → (h→ c) ⇔ (p ∧ h)→ c

Theorem 3

p → (q → s), ¬r ∨ p, q ⇒ (r → s).

Proof

Step Proposition Justification
1. ¬r ∨ p Premise
2. r Added premise
3. p (1), (2), disjunction simplification
4. p → (q → s) Premise
5. q → s (3), (4), modus ponens
6. q Premise
7. s (5), (6), modus ponens �
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Indirect proof (Proof by contradition)

Sometimes, it is difficult or infeasible to prove a statement directly. Consider the following
basic fact in number theory.

Theorem

There are infinitely many prime numbers.

Proving this directly might involve a method or algorithm for generating prime numbers of
arbitrary size. The following is an indirect proof.

Proof

Assume, for sake of contradiction, that there are finitely many prime numbers, p1, . . . , pn.

Let’s look at what proof by contradiction looks like in propositional calculus.
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Indirect proof

Consider a theorem P ⇒ C , where P represents the premises p1, . . . , pn.

The method of indirect proof is based on the equivalence (by DeMorgan’s laws)

P → C ⇔ ¬(P ∧ ¬C).

Said differently, if P ⇒ C , then P ∧ ¬C is always false, i.e., a contradiction.

In this method, we negate the conclusion and add it to the premises. The proof is complete
when we find a contradiction from this set of propositions.

A contradiction will often take the form t ∧ ¬t.

Theorem 4

a→ b, ¬(b ∨ c), ⇒ ¬a.

Proof

Step Proposition Justification
1. a Negation of the conclusion
2. a→ b Premise
3. b (1), (2), modus ponens
4. b ∨ c (3), disjunctive addition
5. ¬(b ∨ c) Premise
6. 0 (4), (5) �
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Indirect proof

Theorem 1 (revisted)

p → r , q → s, p ∨ q ⇒ s ∨ r .

Proof

Step Proposition Justification
1. ¬(s ∨ r) Negated conclusion
2. ¬s ∧ ¬r (1), DeMorgan’s laws
3. ¬s (2), conjunctive simplification
4. q → s Premise
5. ¬q (3), (4), modus tollens
6. ¬r (2), conjunctive simplification
7. p → r Premise
8. ¬p (6), (7), modus tollens
9. ¬p ∧ ¬q Conjunction of (5), (8)

10. ¬(p ∨ q) DeMorgan’s law
11. p ∨ q Premise
12. 0 (10), (11) �
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Applications of propositional calculus

For a playful description on how propositional calculus plays a role in artifical intelligence,
see the Pulitzer Prize winning book Gödel, Escher, Bach: an Eternal Golden Braid, by
Douglas Hofstadter.
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