Lecture 2.5: Proofs in propositional calculus

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

M. Macauley (Clemson) Lecture 2.5: Proofs in propositional calculus Discrete Mathematical Structures 1/9


mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu

Motivation

Consider the theorem:
a,a—b b—c, ...,y >z = z

A truth table will have 22° entries. At 1 million cases/sec, it will take 1 hour to verify this.

Now, consider the theorem:

P1, P1 — P2, P2 —> P3, ...,P99 — P100 = P100-

A truth table will have 2100 ~ 1.27 x 103 entries. At 1 millions cases/sec, it will take
1.47 x 10 days to check.

Figure: The observable universe is approximately 5 x 10'2 days old.
Clearly, we need alternate methods of proofs.
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Direct proof

Theorem 1

p—r,gq—>s, pvVg=sVr.

Proof
Step Proposition Justification

1. pVgqg Premise

2. -p—q (1), conditional rule  [p— g < —pVq]
3. q—s Premise

4. -p—s (2), (3), transitivity

5. s —p (4), contrapositive

6. p—r Premise

7. s —=r (5), (6), transitivity

8. sVr (7), conditional rule O
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Direct proof

Theorem 2
—-pVgqg, sVp, 7q=s.
w
Proof 1
Step Proposition Justification
1. -pVq Premise
2. -q Premise
3. -p (1), (2), disjunctive simplification
4, sVp Premise
5. s (3), (4), disjunctive simplification O
.
Proof 2
Step Proposition Justification
1. -pVq Premise
2. p—q (1), conditional rule
3. -q — —p (2), contrapositive
4. sVp Premise
5. pVs Commutativity
6. -p—s (5), conditional rule
7. -q—s (3), (6), transitivity
8. -q Premise
9. s (7). (8) modus ponens O
w
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Direct proof

The conclusion of a theorem is often a conditional proosition.

In this case, the condition of the conclusion can be included as an added premise in the
proof.

This rule is justified by the logical law
p—(h—c) < (pAh)—c

Theorem 3

p—(q—s), rvp q=(r—s).

Proof
Step Proposition Justification
1. -rvVp Premise
2. r Added premise
3. p (1), (2), disjunction simplification
4. p—(qg—s) Premise
5. q—s (3), (4), modus ponens
6. q Premise
7. s (5), (6), modus ponens O
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Indirect proof (Proof by contradition)

Sometimes, it is difficult or infeasible to prove a statement directly. Consider the following
basic fact in number theory.

There are infinitely many prime numbers.

Theorem J

Proving this directly might involve a method or algorithm for generating prime numbers of
arbitrary size. The following is an indirect proof.

Proof

Assume, for sake of contradiction, that there are finitely many prime numbers, p1, ..., pn.

Let's look at what proof by contradiction looks like in propositional calculus.
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Indirect proof
Consider a theorem P = C, where P represents the premises py, ..., pn.
The method of indirect proof is based on the equivalence (by DeMorgan’s laws)

P—C & —\(P/\—|C).
Said differently, if P = C, then P A —C is always false, i.e., a contradiction.

In this method, we negate the conclusion and add it to the premises. The proof is complete
when we find a contradiction from this set of propositions.

A contradiction will often take the form t A —t.

Theorem 4
a— b, =(bVc) = na

Proof
Step Proposition Justification
1. a Negation of the conclusion
2. a—b Premise
3. b (1), (2), modus ponens
4. bV c (3), disjunctive addition
5. —(bVc) Premise
6. 0 (4), (5) O
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Indirect proof

Theorem 1 (revisted)

p—r,q—s, pVvVqg=sVr.

Proof
Step Proposition Justification
1. —(sVr) Negated conclusion
2. —s A r (1), DeMorgan’s laws
3. —s (2), conjunctive simplification
4. qg—s Premise
5. -q (3), (4), modus tollens
6. —-r (2), conjunctive simplification
7. p—r Premise
8. -p (6), (7), modus tollens
9. —pA—q Conjunction of (5), (8)
10. =(pVaq) DeMorgan's law
11. pVgqg Premise
12. 0 (10), (11) o
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Applications of propositional calculus

For a playful description on how propositional calculus plays a role in artifical intelligence,
see the Pulitzer Prize winning book Gédel, Escher, Bach: an Eternal Golden Braid, by
Douglas Hofstadter.
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