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Motivation

Thus far, we've come across statements like the following:

Theorem

For any sets A, B, and C,

1. A\ (A\ B) C B.

2. AnN(BUC)=(AnB)U (AN C).
3. f AUB C AUC, then B C C.

Thus far, our primary method of “proof” has been by examining a Venn diagram.

A
(XN

Did you catch the “lie” above? Let that be a cautionary tale for “proof by picture”. ..
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Warm-up

Basic facts

x€EAUB & xc€AorxeB

x€AUB & x¢g€Aandx¢B

x€EANB <& x€AandxeB

x¢ANB & xgAorx¢B

x€EA\B & xeAandx¢B

xZ¢A\B & xgAorxeB

x€EAXB & x=(ab)forsomeacA beB
ACB <& IfxeA thenxeB
A=B & ACBandADB

In this lecture, we'll see three techniques for proving A = B:

(i) Explicitly writing A={xe U|...}=---={xeU|...} =B.
(i) Showing AC B and A D B.

(iii) Indirectly, i.e., by contrapositive or contradiction.
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Basic laws of propositional calculus

Recall that we've seen a number of basic laws of propositional calculus.

Moreover, each law has a dual law obtained by exchanging the symbols:

m A with Vv m 0 with 1.

Basic law Name Dual law
pvg&sqVp Commutativity PAGQESqgAp
(pVag)VrepVv(gyr) Associativity (pA@)Ar<pA(gAT)
pA(gVr)< (pAq)V(pAr) Distributivity pV(gAr)< (pVag)A(pVr)
pVvVO0&p Identity pAlsp
pA-p&0 Negation pV-p&esl
pVp&ep Idempotent PAPESp
pANO&0 Null pVliel
pA(pVqg)ep Absorption pV(pAng)ep
-(pVqg)e pA—g DeMorgan's —(pAg)< —pV g

We can turn each of these into an associated law of set theory by replacing:

m p with A m A with N m 0 with 0 m - with €
m g with B m V with U m 1 with U B & with =
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Basic laws of set theory

The basic laws of propositional calculus all have an associative basic law of set theory.

Moreover, each law has a dual law obtained by exchanging the symbols:

= N with U = () with U.

Basic law Name Dual law
AUB=BUA Commutativity ANB=BNA
(AuB)UC=AU(BUC) Associativity (ANB)NC=An(BNC)
AN(BUC)=(ANB)U(ANC) Distributivity AU(BNC)=(AUB)N(AUC)
AUD=A Identity ANU=A
ANAc = Negation AUA=U
AUA=A Idempotent ANA=A
AND=0 Null AuU=U
AN(AUB)=A Absorption AU(ANB)=A
(AUB)¢ = AN B° DeMorgan'’s (AN B)¢ = AU B°

Let’s start by proving AN (BU C) = (AN B) U (AN C) two different ways.
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Method 1: proof using set notation

Theorem
For any sets A, B, and C,

AN(BUC)=(ANB)U (AN C).

Proof

AN(BUC)={xeU|(x€AA(xeBUCQO)}
={xeU|(xeAA[xeB)V(xe )}
={xeU|[(xeA)A(xEB)V[x€AA(xeC)} distributive law
={xeU|(xe AnB)V(xe AnC)}
={xeU|xe[(AnB)U(ANO)]}
= (ANB)U(ANC)

definition of N
definition of U

definition of N
definition of U
O
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Method 2: proof by showing C and 2

Theorem
For any sets A, B, and C,

AN(BUC)=(ANB)U (AN C).

Proof
wc

S
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Corollaries
Sometimes, establishing a theorem can lead right away to a follow-up result called a corollary.

Theorem
For any sets A, B, and C,

AN(BUC)=(ANB)U (AN C).

Corollary

For any sets A, B,
(ANB)U(ANB) = A.

Proof
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Which method to use?

In many instances, such as proving AN (BUC) = (AN B)U (AN C), either of the two
aforementioned methods work equally well.

However, sometimes there is no choice. Consider the following example from linear algebra.
Let V be a vector space over R. Recall that the subspace spanned by S C V is defined as

Span(S) = {ai1s1 + -+ aksk | a ER, s € S}

Theorem

For any S C V,

Span(S) = [ Wa,
SCW,<V

where the intersection is taken over all subspaces W of V that contain S.
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Method 3: Proof by contrapositive or contradiction

If the set equality A = B we wish to prove is the conclusion of an If-Then statement, then
we can consider an indirect proof.

Let's recall this concept by considering the following statement that we wish to prove:
Vx € U, If P(x), then Q(x)

An indirect proof can be casted two ways: by proving the contrapositive, or as a proof by
contradiction.

Method First step Goal
Contrapositive Take x € U for which =Q(x) =P(x)
Contradiction Suppose Ix € U for which P(x) and =Q(x) P(x) and =P(x)

Table : Difference between proof by contraposition and contradiction.
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Method 3: Proof by contrapositive or contradiction

To illustrate this method, consider the following theorem.

Theorem
Let A,B,C besets. f AC Band BNC =0, then AN C = (.

Proof
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