Lecture 1.1: Vector spaces

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Motivation

A (real-valued) function f is linear if

$$
f(a x+b y)=a f(x)+b f(y) .
$$

In other words, if you can "break apart sums and pull out constants".
Many common structures and operations have this property. For example:

- derivatives: $\frac{d}{d x}(a u+b v)=a \frac{d u}{d x}+b \frac{d v}{d x}$
- integrals: $\int(a u+b v) d x=a \int u d x+b \int v d x$
- matrices and vectors: $\mathbf{M}(a \mathbf{x}+b \mathbf{y})=a \mathbf{M x}+b \mathbf{M y}$
- Laplace transforms: $\mathcal{L}(a f+b g)=a \mathcal{L}(f)+b \mathcal{L}(g)$

■ Solutions of certain ODEs: If y_{1} and y_{2} solve $y^{\prime \prime}+k^{2} y=0$, then so does $C_{1} y_{1}+C_{2} y_{2}$.
We encounter this type of linear structure all the time without realizing it.
A beginning linear algebra class usually focuses on systems of equations and matrix algebra. An $m \times n$ matrix encodes a linear map from \mathbb{R}^{n} to \mathbb{R}^{m}. Elements in these sets are "vectors".

But this is just a special case of the "bigger picture". We'll begin this course by peeking at this structure, which underlies nearly every aspect of the mathematics in this class.

Vector spaces

Definition

A vector space consists of a set V (of "vectors") and a set \mathbb{F} (of "scalars"; usually \mathbb{R} or \mathbb{C}) that is:

- closed under addition: $v, w \in V \Longrightarrow v+w \in V$
- closed under scalar multiplication: $v \in V, c \in \mathbb{F} \Longrightarrow c v \in V$

Remark

We can deduce some easy consequences:

- $\mathbf{0} \in V$
- $v \in V \Longrightarrow-v \in V$

If $\mathbb{F}=\mathbb{R}$, we say V is a "real vector space", an " \mathbb{R}-vector space", or a "vector space over \mathbb{R} ".
A "complex vector space" is defined similarly (i.e., if $\mathbb{F}=\mathbb{C}$).

Blanket assumption

Unless specified otherwise, we will assume by default that $\mathbb{F}=\mathbb{R}$.

Vector spaces

Examples

1. $V=\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}$.

$$
\begin{aligned}
& \text { "+": }\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \in \mathbb{R}^{n} \\
& \text { ".": } c \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(c x_{1}, \ldots, c x_{n}\right) \in \mathbb{R}^{n}
\end{aligned}
$$

2. $V=\mathbb{C}^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{i} \in \mathbb{C}\right\}$.
3. $V=\mathbb{R}_{n}[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}\right\}$. "polynomials of degree $\leq n "$
4. $V=\mathbb{R}[x]=\left\{a_{0}+a_{1} x+\cdots+a_{k} x^{k} \mid a_{i} \in \mathbb{R}\right\}$. "polynomials of arbitrary degree"
5. $V=\mathbb{R}[[x]]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots \mid a_{i} \in \mathbb{R}\right\}$. "power series"
6. $V=\mathcal{C}^{1}(\mathbb{R})=$ (once) differentiable real-valued functions s.t. $f^{\prime}(x)$ is continuous.
7. $V=\mathcal{C}^{\infty}(\mathbb{R})=$ infinitely differentiable functions; $f^{(k)}(x)$ continuous for all k.
8. $V=\operatorname{Per}_{2 \pi}=$ piecewise continuous functions with $f(x)=f(x+2 \pi)$, i.e., period $T=2 \pi / n$ for some $n \in \mathbb{N}$.

Non-examples

1. Polynomials with degree n. [e.g., $\left(x^{n}+1\right)+\left(2-x^{n}\right)=3$]
2. The upper half-plane in \mathbb{R}^{2}. [e.g., $-1 \cdot(0,1)=(0,-1)$]
3. A line (or plane) not through the origin. [e.g., $0 \cdot v=0$]

Subspaces

Definition

If V is a vector space (over \mathbb{F}), then a subspace is a subset $W \subseteq V$ that is also a vector space (over \mathbb{F}). We write $W \leq V$.

Examples

1. V and $\{0\}$ are always subspaces of V.
2. Let $V=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}=\mathbb{R}^{3}$ and $W=\{(x, y, 0) \mid x, y \in \mathbb{R}\} \cong \mathbb{R}^{2}$.

Then W is a subspace of V.
3. Clearly, $\mathbb{R}_{n}[x] \subsetneq \mathbb{R}[x] \subsetneq \mathbb{R}[[x]]$ as subsets.

- $\mathbb{R}_{n}[x]$ is a subspace of $\mathbb{R}[x]$ and $\mathbb{R}[[x]]$.
- $\mathbb{R}[x]$ is a subspace of $\mathbb{R}[[x]]$.

4. $\mathcal{C}^{\infty}(\mathbb{R})$ is a subspace of $\mathcal{C}^{1}(\mathbb{R})$. Also, note that

$$
\mathcal{C}^{1}(\mathbb{R}) \supsetneq \mathcal{C}^{2}(\mathbb{R}) \supsetneq \mathcal{C}^{3}(\mathbb{R}) \supsetneq \cdots \supsetneq \mathcal{C}^{\infty}(\mathbb{R})
$$

Remark

Subspaces in \mathbb{R}^{n} "look like" hyperplanes (lines, planes, etc.) through the origin.

Subspaces

Definition

If V is a vector space (over \mathbb{F}), then a subspace is a subset $W \subseteq V$ that is also a vector space (over \mathbb{F}). We write $W \leq V$.

Non-examples

1. The unit circle in $\mathbb{R}^{2} \quad\left(\subseteq \mathbb{R}^{2}\right)$
2. Polynomials of degree $n \quad\left(\subseteq \mathbb{R}_{n}[x]\right)$
3. Upper half-plane $\left(\subseteq \mathbb{R}^{2}\right)$
4. The line $y=2 x+3 \quad\left(\subseteq \mathbb{R}^{2}\right)$
5. The plane $\{(x, y, 1) \mid x, y \in \mathbb{R}\} \quad\left(\subseteq \mathbb{R}^{3}\right)$
6. Piecewise continuous functions with period exactly $2 \pi \quad\left(\subseteq \operatorname{Per}_{2 \pi}\right)$

How to determine whether W is a subspace of V
Given a collection of "vectors" $W \subseteq V$, ask:

- Is it closed under addition?
- Is it closed under scalar multiplication?

