Lecture 1.2: Linear independence and spanning sets

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Linear independence

Definition (recall)

A vector space consists of a set V (of "vectors") and a set \mathbb{F} (of "scalars"; usually \mathbb{R} or \mathbb{C}) that is:

- closed under addition: $v, w \in V \implies v + w \in V$
- closed under scalar multiplication: $v \in V$, $c \in \mathbb{F} \implies cv \in V$

In general, we are not allowed to multiply vectors.

Definition

A set $S \subseteq V$ is linearly independent if for any $v_1, \ldots, v_n \in S$:

 $a_1v_1 + \cdots + a_nv_n = 0 \implies a_1 = a_2 = \cdots = a_n = 0.$

If S is not linearly independent, then it is linearly dependent.

Intuition

 $S \subseteq V$ is linearly independent if none of the vectors in S can be expressed as a linear combination of the others.

Linear independence

Definition (recall)

A set $S \subseteq V$ is linearly independent if for any $v_1, \ldots, v_n \in S$:

 $a_1v_1 + \cdots + a_nv_n = 0 \implies a_1 = a_2 = \cdots = a_n = 0.$

Example 1

Let $V = \mathbb{R}^3$, and $S \subseteq V$.

- 1. The set $S = \{v_1\}$ is linearly independent iff $v_1 \neq 0$.
- 2. The set $S = \{v_1, v_2\}$ is linearly independent iff v_1 and v_2 don't lie on the same line.
- 3. The set $S = \{v_1, v_2, v_3\}$ is linearly independent iff v_1, v_2, v_3 don't lie on the same plane.
- 4. The set $S = \{v_1, v_2, v_3, v_4\}$ is *never* linearly independent in \mathbb{R}^3 .

Example 2

Let $V = \mathbb{R}_3[x]$, and $S \subseteq V$.

- 1. The set $S = \{1, x, x^2\}$ is linearly independent.
- 2. The set $S = \{1, x, x^2, x^3\}$ is linearly independent.
- 3. The set $S = \{1, x, x^2, 1 + 3x 4x^2\}$ is linearly dependent.
- 4. The set $S = \{1, x, x^2, x^3 + x + 1\}$ is linearly independent.

Linear independence

Definition (recall)

A set $S \subseteq V$ is linearly independent if for any $v_1, \ldots, v_n \in S$:

 $a_1v_1 + \cdots + a_nv_n = 0 \implies a_1 = a_2 = \cdots = a_n = 0.$

Example 3

Let $V = \mathcal{C}^{\infty}(\mathbb{C})$, and $S \subseteq V$.

1. $S = \{\cos t, \sin t\}$ is linearly independent.

<u>Reason</u>: If $C_1 \cos t + C_2 \sin t = 0$, then $C_1 = C_2 = 0$.

2. $S = \{e^{2t}, e^{3t}\}$ is linearly independent.

<u>Reason</u>: If $C_1 e^{2t} + C_2 e^{3t} = 0$, then $C_1 = C_2 = 0$.

3. $S = \{e^{2it}, e^{-2it}, \cos 2t\}$ is linearly dependent.

<u>Reason</u>: $\cos 2t = \frac{1}{2}e^{2it} + \frac{1}{2}e^{-2it}$.

4. $S = \{e^{2t}, e^{-2t}, \cosh 2t\}$ is linearly dependent.

<u>Reason</u>: $\cosh 2t = \frac{1}{2}e^{2t} + \frac{1}{2}e^{-2t}$.

Spanning sets and bases

Definition

A subset $S \subseteq V$ spans V if every $v \in V$ can be written as $v = a_1v_1 + \cdots + a_nv_n$ where $v_i \in S$, $a_i \in \mathbb{F}$.

Moreover, if S is also linearly independent then S is a basis of V.

Intuition

- "S spans V" means "S generates all of V"
- "S is a basis for V" means "S is a minimal set that generates V."

Examples

Let $V = \mathbb{R}^2$.	Spans \mathbb{R}^2 ?	Basis for \mathbb{R}^2 ?
$\bullet \ S = \{(1,0), (0,1)\}$		
• $S = \{(3,1), (1,1)\}$		
$\bullet S = \{(1,0), (0,1), (3,1)\}$		
• $S = \{(1,1)\}$		

Spanning sets and bases

Theorem

Let $S \subseteq V$. The following are equivalent:

- S is a basis of V,
- S is a minimal spanning set of V,
- S is a maximal linearly independent set in V.

Example. Let $V = \mathbb{R}^3$, $W \subseteq V$ any plane (through **0**).

Intuition. We need two vectors (not collinear) to generate W.

In fact, $S = \{v_1, v_2\}$ is a *basis* for W iff v_1 and v_2 are not collinear.

Let's "go up" a dimension and find a basis for V.

 $S = \{v_1, v_2, v_3\}$ is a basis for V iff they are not co-planar.

It should be clear how this generalizes to higher dimensions.

(By the way, what do we mean by "dimension"?)

Spanning sets and bases

Definition

The dimension of a vector space is the number of vectors in any basis.

Examples

- $dim(\mathbb{R}^n) = n:$ Basis: $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$
- dim $(\mathbb{R}_n[x]) = n + 1$: Basis: $\{1, x, \dots, x^n\}$
- dim $(\mathbb{R}[x]) = \infty$: Basis: $\{1, x, x^2, \dots\}$
- $\blacksquare \dim(\operatorname{Per}_{2\pi}) = \infty: \qquad \qquad \operatorname{Basis:} \ \{1, \cos x, \cos 2x, \dots\} \cup \{\sin x, \sin 2x, \dots\}.$

Remark

Any subset $S \subseteq V$ spans a subspace W of V. Denote this subspace by Span(S).

How to construct a basis from a spanning set

Algorithm

Consider any finite subset $S \subseteq V$ and let W = Span(S).

We may ask: If S a basis for W?

If not, then S is not a minimal spanning set, so we can remove some v_1 to get $S' = S \setminus \{v_1\}$, a smaller set that spans W.

We ask again: Is S' a basis for W?

If not, then we can remove some $v_2 \in S'$ to get $S'' := S' \setminus \{v_2\}$, a smaller set that spans W.

Since $|S| < \infty$, this process will eventually terminate, and we'll be left with $\mathcal{B} := S^{(k)}$, a basis for W.

How to construct a basis from a spanning set

Example

Let $S = \{(1,0,0), (0,1,0), (1,1,0), (3,1,0)\} \subseteq \mathbb{R}^3$.

W = Span(S) is a plane. Since dim(W) = 2, a basis of W has 2 vectors.

We can remove (1, 1, 0) and (3, 1, 0) to get a basis $\mathcal{B} = \{(1, 0, 0), (0, 1, 0)\}$ of W.

This means that

$$W = \{C_1(1,0,0) + C_2(0,1,0) \mid C_1, C_2, \in \mathbb{R}\} \\ = \{(C_1, C_2, 0) \mid C_1, C_2, \in \mathbb{R}\}.$$

However, note that $\{(1,0,0), (3,1,0)\}$ is also a basis for W.

This means that

$$W = \{C_1(1,0,0) + C_2(3,1,0) \mid C_1, C_2, \in \mathbb{R}\} \\ = \{(C_1 + 3C_2, C_2, 0) \mid C_1, C_2, \in \mathbb{R}\}.$$