Lecture 1.2: Linear independence and spanning sets

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Linear independence

Definition (recall)

A vector space consists of a set V (of "vectors") and a set \mathbb{F} (of "scalars"; usually \mathbb{R} or \mathbb{C}) that is:

- closed under addition: $v, w \in V \Longrightarrow v+w \in V$
- closed under scalar multiplication: $v \in V, c \in \mathbb{F} \Longrightarrow c v \in V$

In general, we are not allowed to multiply vectors.

Definition

A set $S \subseteq V$ is linearly independent if for any $v_{1}, \ldots, v_{n} \in S$:

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0 \quad \Longrightarrow \quad a_{1}=a_{2}=\cdots=a_{n}=0
$$

If S is not linearly independent, then it is linearly dependent.

Intuition

$S \subseteq V$ is linearly independent if none of the vectors in S can be expressed as a linear combination of the others.

Linear independence

Definition (recall)

A set $S \subseteq V$ is linearly independent if for any $v_{1}, \ldots, v_{n} \in S$:

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0 \quad \Longrightarrow \quad a_{1}=a_{2}=\cdots=a_{n}=0
$$

Example 1

Let $V=\mathbb{R}^{3}$, and $S \subseteq V$.

1. The set $S=\left\{v_{1}\right\}$ is linearly independent iff $v_{1} \neq 0$.
2. The set $S=\left\{v_{1}, v_{2}\right\}$ is linearly independent iff v_{1} and v_{2} don't lie on the same line.
3. The set $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent iff v_{1}, v_{2}, v_{3} don't lie on the same plane.
4. The set $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is never linearly independent in \mathbb{R}^{3}.

Example 2

Let $V=\mathbb{R}_{3}[x]$, and $S \subseteq V$.

1. The set $S=\left\{1, x, x^{2}\right\}$ is linearly independent.
2. The set $S=\left\{1, x, x^{2}, x^{3}\right\}$ is linearly independent.
3. The set $S=\left\{1, x, x^{2}, 1+3 x-4 x^{2}\right\}$ is linearly dependent.
4. The set $S=\left\{1, x, x^{2}, x^{3}+x+1\right\}$ is linearly independent.

Linear independence

Definition (recall)

A set $S \subseteq V$ is linearly independent if for any $v_{1}, \ldots, v_{n} \in S$:

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=0 \quad \Longrightarrow \quad a_{1}=a_{2}=\cdots=a_{n}=0 .
$$

Example 3

Let $V=\mathcal{C}^{\infty}(\mathbb{C})$, and $S \subseteq V$.

1. $S=\{\cos t, \sin t\}$ is linearly independent.

Reason: If $C_{1} \cos t+C_{2} \sin t=0$, then $C_{1}=C_{2}=0$.
2. $S=\left\{e^{2 t}, e^{3 t}\right\}$ is linearly independent.

Reason: If $C_{1} e^{2 t}+C_{2} e^{3 t}=0$, then $C_{1}=C_{2}=0$.
3. $S=\left\{e^{2 i t}, e^{-2 i t}, \cos 2 t\right\}$ is linearly dependent.

Reason: $\cos 2 t=\frac{1}{2} e^{2 i t}+\frac{1}{2} e^{-2 i t}$.
4. $S=\left\{e^{2 t}, e^{-2 t}, \cosh 2 t\right\}$ is linearly dependent.

Reason: $\cosh 2 t=\frac{1}{2} e^{2 t}+\frac{1}{2} e^{-2 t}$.

Spanning sets and bases

Definition

A subset $S \subseteq V$ spans V if every $v \in V$ can be written as $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ where $v_{i} \in S, a_{i} \in \mathbb{F}$.

Moreover, if S is also linearly independent then S is a basis of V.

Intuition

- " S spans V " means " S generates all of V "
- " S is a basis for V " means " S is a minimal set that generates V."

Examples

Let $V=\mathbb{R}^{2}$.

- $S=\{(1,0),(0,1)\}$
- $S=\{(3,1),(1,1)\}$
- $S=\{(1,0),(0,1),(3,1)\}$
- $S=\{(1,1)\}$

Spanning sets and bases

Theorem

Let $S \subseteq V$. The following are equivalent:

- S is a basis of V,
- S is a minimal spanning set of V,

■ S is a maximal linearly independent set in V.

Example. Let $V=\mathbb{R}^{3}, W \subseteq V$ any plane (through $\mathbf{0}$).
Intuition. We need two vectors (not collinear) to generate W.
In fact, $S=\left\{v_{1}, v_{2}\right\}$ is a basis for W iff v_{1} and v_{2} are not collinear.
Let's "go up" a dimension and find a basis for V.
$S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V iff they are not co-planar.
It should be clear how this generalizes to higher dimensions.
(By the way, what do we mean by "dimension"?)

Spanning sets and bases

Definition

The dimension of a vector space is the number of vectors in any basis.

Examples

- $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n:$

Basis: $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$

- $\operatorname{dim}\left(\mathbb{R}_{n}[x]\right)=n+1: \quad$ Basis: $\left\{1, x, \ldots, x^{n}\right\}$
- $\operatorname{dim}(\mathbb{R}[x])=\infty: \quad$ Basis: $\left\{1, x, x^{2}, \ldots\right\}$
- $\operatorname{dim}\left(\operatorname{Per}_{2 \pi}\right)=\infty: \quad$ Basis: $\{1, \cos x, \cos 2 x, \ldots\} \cup\{\sin x, \sin 2 x, \ldots\}$.

Remark

Any subset $S \subseteq V$ spans a subspace W of V. Denote this subspace by $\operatorname{Span}(S)$.

How to construct a basis from a spanning set

Algorithm

Consider any finite subset $S \subseteq V$ and let $W=\operatorname{Span}(S)$.
We may ask: If S a basis for W ?

If not, then S is not a minimal spanning set, so we can remove some v_{1} to get $S^{\prime}=S \backslash\left\{v_{1}\right\}$, a smaller set that spans W.

We ask again: Is S^{\prime} a basis for W ?

If not, then we can remove some $v_{2} \in S^{\prime}$ to get $S^{\prime \prime}:=S^{\prime} \backslash\left\{v_{2}\right\}$, a smaller set that spans W.
Since $|S|<\infty$, this process will eventually terminate, and we'll be left with $\mathcal{B}:=S^{(k)}$, a basis for W.

How to construct a basis from a spanning set

Example

Let $S=\{(1,0,0),(0,1,0),(1,1,0),(3,1,0)\} \subseteq \mathbb{R}^{3}$.
$W=\operatorname{Span}(S)$ is a plane. Since $\operatorname{dim}(W)=2$, a basis of W has 2 vectors.
We can remove $(1,1,0)$ and $(3,1,0)$ to get a basis $\mathcal{B}=\{(1,0,0),(0,1,0)\}$ of W.
This means that

$$
\begin{aligned}
W & =\left\{C_{1}(1,0,0)+C_{2}(0,1,0) \mid C_{1}, C_{2}, \in \mathbb{R}\right\} \\
& =\left\{\left(C_{1}, C_{2}, 0\right) \mid C_{1}, C_{2}, \in \mathbb{R}\right\} .
\end{aligned}
$$

However, note that $\{(1,0,0),(3,1,0)\}$ is also a basis for W.
This means that

$$
\begin{aligned}
W & =\left\{C_{1}(1,0,0)+C_{2}(3,1,0) \mid C_{1}, C_{2}, \in \mathbb{R}\right\} \\
& =\left\{\left(C_{1}+3 C_{2}, C_{2}, 0\right) \mid C_{1}, C_{2}, \in \mathbb{R}\right\}
\end{aligned}
$$

