Lecture 1.3: Linear maps

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Linear maps

Definition

A linear map is a function $T: V \rightarrow W$ between vector spaces V and W satisfying

T(ax + by) = aT(x) + bT(y), for all $x, y \in V$; $a, b \in \mathbb{F}$.

When the vector spaces consist of functions (e.g., $\mathcal{C}^{\infty}(\mathbb{R})$, $\mathbb{R}[x]$, or $\operatorname{Per}_{2\pi}(\mathbb{R})$), we often use the term linear operator.

For example, $\frac{d}{dx}$ and \int are linear operators.

When our vector space is \mathbb{R}^n , we usually just say linear "map" or "function".

For example, f(x) = 3x and $f(x_1, x_2) = 8x_1 - 3x_2$ are linear functions.

Definition

The kernel (or nullspace) of a linear map $T: V \to W$, denoted ker(T) is the set of vectors such that T(v) = 0:

$$\ker(T) = \big\{ v \in V \mid T(v) = 0 \big\}.$$

The image (or range) of T is the set T(V), i.e.,

$$\operatorname{im}(T) = \{T(v) \mid v \in V\}.$$

Examples

From calculus

Let $V = W = C^{\infty}(\mathbb{R})$. 1. $T = \frac{d}{dx}$ is a linear operator: $T: f(x) \longmapsto f'(x)$.

2. $T = \int$ is a linear operator:

$$T\colon f(x)\longmapsto \int f(x)\,dx.$$

3. The Laplace transform ${\cal L}$ is a linear operator:

$$\mathcal{L}\colon f(t)\longmapsto \int_0^\infty f(t)\,e^{-st}\,dt.$$

Examples

Matrices

Any 2 × 2 matrix is a linear map $A \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix}$$

Facts

- $|\det A| = \text{scaling factor } (= \text{area of parallelogram}); \text{ negative denotes reflection}.$
- A is invertible iff det $A \neq 0$.
- In general, an $m \times n$ matrix is a linear map $A \colon \mathbb{R}^n \to \mathbb{R}^m$
- im A and ker A are both subspaces, and they satisfy

$$\dim(\operatorname{im} A) + \dim(\ker A) = n.$$

Intuitively, every "dimension" either gets collapsed or persists.

Connections between linear operators and ODEs

Preview!
Let
$$V = W = C^{\infty}(\mathbb{R})$$
.
• $T = \frac{d^2}{dx^2}$ is a linear operator: $y \mapsto y''$.
 $\ker(T) = \{y(x) \mid y''(x) = 0\} = \{C_1x + C_2 \mid C_1, C_2 \in \mathbb{R}\}.$
• $T = \frac{d^2}{dt^2} + k^2$ is a linear operator: $y \mapsto y'' + k^2y$.
 $\ker(T) = \{y(t) \mid y'' + k^2y = 0\} = \{C_1 \cos kt + C_2 \sin kt \mid C_1, C_2 \in \mathbb{R}\}.$
• $T = \frac{d^2}{dt^2} + t^2$ is a linear operator: $y \mapsto y'' + t^2y$.
 $\ker(T) = \{y(t) \mid y'' + t^2y = 0\}.$

Connections between linear operators and ODEs

Big idea

The kernel (or nullspace) of these linear differential operators are solutions to linear homogeneous differential equations.

Since ker(T) is a vector space, the set of solutions (i.e., the general solution) to a linear homogeneous ODE is a vector space.