Lecture 1.3: Linear maps

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Linear maps

Definition

A linear map is a function $T: V \rightarrow W$ between vector spaces V and W satisfying

$$
T(a x+b y)=a T(x)+b T(y), \quad \text { for all } x, y \in V ; a, b \in \mathbb{F}
$$

When the vector spaces consist of functions (e.g., $\mathcal{C}^{\infty}(\mathbb{R}), \mathbb{R}[x]$, or $\operatorname{Per}_{2 \pi}(\mathbb{R})$), we often use the term linear operator.

For example, $\frac{d}{d x}$ and \int are linear operators.
When our vector space is \mathbb{R}^{n}, we usually just say linear "map" or "function".
For example, $f(x)=3 x$ and $f\left(x_{1}, x_{2}\right)=8 x_{1}-3 x_{2}$ are linear functions.

Definition

The kernel (or nullspace) of a linear map $T: V \rightarrow W$, denoted $\operatorname{ker}(T)$ is the set of vectors such that $T(v)=0$:

$$
\operatorname{ker}(T)=\{v \in V \mid T(v)=0\} .
$$

The image (or range) of T is the set $T(V)$, i.e.,

$$
\operatorname{im}(T)=\{T(v) \mid v \in V\}
$$

Examples

From calculus

Let $V=W=\mathcal{C}^{\infty}(\mathbb{R})$.

1. $T=\frac{d}{d x}$ is a linear operator:

$$
T: f(x) \longmapsto f^{\prime}(x) .
$$

2. $T=\int$ is a linear operator:

$$
T: f(x) \longmapsto \int f(x) d x
$$

3. The Laplace transform \mathcal{L} is a linear operator:

$$
\mathcal{L}: f(t) \longmapsto \int_{0}^{\infty} f(t) e^{-s t} d t .
$$

Examples

Matrices

Any 2×2 matrix is a linear map $A: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$.

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2} \\
a_{21} x_{1}+a_{22} x_{2}
\end{array}\right] .
$$

Facts

- $|\operatorname{det} A|=$ scaling factor (=area of parallelogram); negative denotes reflection.
- A is invertible iff $\operatorname{det} A \neq 0$.
- In general, an $m \times n$ matrix is a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- im A and $\operatorname{ker} A$ are both subspaces, and they satisfy

$$
\operatorname{dim}(\operatorname{im} A)+\operatorname{dim}(\operatorname{ker} A)=n .
$$

Intuitively, every "dimension" either gets collapsed or persists.

Connections between linear operators and ODEs

Preview!

Let $V=W=\mathcal{C}^{\infty}(\mathbb{R})$.

- $T=\frac{d^{2}}{d x^{2}}$ is a linear operator: $y \longmapsto y^{\prime \prime}$.

$$
\operatorname{ker}(T)=\left\{y(x) \mid y^{\prime \prime}(x)=0\right\}=\left\{C_{1} x+C_{2} \mid C_{1}, C_{2} \in \mathbb{R}\right\}
$$

- $T=\frac{d^{2}}{d t^{2}}+k^{2}$ is a linear operator: $y \longmapsto y^{\prime \prime}+k^{2} y$.

$$
\operatorname{ker}(T)=\left\{y(t) \mid y^{\prime \prime}+k^{2} y=0\right\}=\left\{C_{1} \cos k t+C_{2} \sin k t \mid C_{1}, C_{2} \in \mathbb{R}\right\}
$$

- $T=\frac{d^{2}}{d t^{2}}+t^{2}$ is a linear operator: $y \longmapsto y^{\prime \prime}+t^{2} y$.

$$
\operatorname{ker}(T)=\left\{y(t) \mid y^{\prime \prime}+t^{2} y=0\right\}
$$

Connections between linear operators and ODEs

Big idea

The kernel (or nullspace) of these linear differential operators are solutions to linear homogeneous differential equations.

Since $\operatorname{ker}(T)$ is a vector space, the set of solutions (i.e., the general solution) to a linear homogeneous ODE is a vector space.

