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Basic Euclidean geometry

Definition

Let V = Rn. The dot product of v = (a1, . . . , an) and w = (b1, . . . , bn) is v · w =
n∑

i=1

aibi .

The length (or “norm”) of v ∈ Rn, denoted ||v||, is the distance from v to 0:

||v|| =
√
v · v =

√
a2

1 + · · ·+ a2
n.

To understand what v · w means geometrically, we can pick a “special” v and w.

Pick v to be on the x-axis (i.e., v = a1e1).

Pick w to be in the xy -plane (i.e., w = b1e1 + b2e2).

By basic trigonometry,

v =
(
||v|| , 0 , 0 , . . . , 0

)
, w =

(
||w|| cos θ , ||w|| sin θ , 0 , . . . , 0

)
.

Proposition

The dot product of any two vectors v,w ∈ Rn satisfies v · w = ||v|| ||w|| cos θ. Equivalently,
the angle θ between them is

cos θ =
v · w
||v|| ||w||

.
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Basic Euclidean geometry
The following relations follow immediately:

(v + w) · (v + w) = v · v + 2 v · w + w · w = ||v + w||2,

(v − w) · (v − w) = v · v − 2 v · w + w · w = ||v − w||2.

Law of cosines

The last equation above says

||v||2 − 2 ||v|| ||w|| cos θ + ||w||2 = ||v − w||2,

which is the law of cosines.

For any unit vector n ∈ Rn (||n|| = 1), the projection of v ∈ Rn onto n is projn(v) = v · n.

For example, consider v = (4, 3) = 4e1 + 3e2 in R2. Note that

proje1
(v) = (4, 3) · (1, 0) = 4, proje2

(v) = (4, 3) · (0, 1) = 3.

Big idea

By defining the “dot product” in Rn, we get for free a notion of geometry. That is, we get
natural definitions of concepts such as length, angles, and projection.

To do this in other vector spaces, we need a generalized notion of “dot product.”
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Inner products

Definition

Let V be an R-vector space. A function 〈−,−〉 : V × V → R is a (real) inner product if it
satisfies (for all u, v,w ∈ V , c ∈ R):

(i) 〈u + v,w〉 = 〈u, v〉+ 〈v,w〉
(ii) 〈cv,w〉 = c〈v,w〉
(iii) 〈v,w〉 = 〈w, v〉
(iv) 〈v, v〉 ≥ 0, with equaility if and only if v = 0.

Conditions (i)–(ii) are called bilinearity, (iii) is symmetry, and (iv) is positivity.

Remark

Defining an inner product gives rise to a geometry, i.e., notions of length, angle, and
projection.

length: ||v|| :=
√
〈v, v〉.

angle: ](v,w) = θ, where cos θ =
〈v,w〉
||v|| ||w||

.

projection: if ||n|| = 1, then we can project v onto n by defining

projn(v) = 〈v, n〉, Projn(v) = 〈v, n〉n.

This is the length or magnitude, of v in the n-direction.
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Orthogonality

Definition

Two vectors v,w ∈ V are orthogonal if 〈v,w〉 = 0. A set {v1, . . . , vn} ⊆ V is orthonormal if
〈vi , vj 〉 = 0 for all i 6= j and ||vi || = 1 for all i .

Key idea

Orthogonal is the abstract version of “perpendicular.”

Orthonormal means “perpendicular and unit length.” An equivalent definition is

〈vi , vj 〉 =

{
0 i 6= j

1 i = j .

Orthonormal bases are really desirable!

Examples

1. Let V = Rn. The standard “dot product” 〈v,w〉 = v ·w =
n∑

i=1

viwi is an inner product.

The set {e1, . . . , en} is an orthonormal basis of Rn. We can write each v ∈ Rn uniquely
as

v = (a1, . . . , an) := a1e1 + · · ·+ anen, where ai = projei (v) = v · ei .
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Orthonormal bases

Examples

2. Consider V = Per2π(C). We can define an inner product as

〈f , g〉 =
1

2π

∫ π

−π
f (x)g(x) dx .

The set {
e inx | n ∈ Z

}
=
{
. . . , e−2ix , e−ix , 1, e ix , e2ix , . . .

}
is an orthonormal basis w.r.t. to this inner product.

Thus, we can write each f (x) ∈ Per2π uniquely as

f (x) =
∞∑

n=−∞
cne

inx = c0 +
∞∑
n=1

cne
inx + c−ne

−inx ,

where

cn = proje inx
(
f
)

= 〈f , e inx 〉 =
1

2π

∫ π

−π
f (x)e−inx dx .
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Orthonormal bases

Examples

3. Consider V = Per2π(R). We can define an inner product as

〈f , g〉 =
1

π

∫ π

−π
f (x)g(x) dx .

The set {
1√
2
, cos x , cos 2x , . . .

}
∪
{

sin x , sin 2x , . . .
}
.

is an orthonormal basis w.r.t. to this inner product.

Thus, we can write each f (x) ∈ Per2π uniquely as

f (x) =
a0

2
+
∞∑
n=1

an cos nx + bn sin nx ,

where

an = projcos nx

(
f
)

= 〈f , cos nx〉 =
1

π

∫ π

−π
f (x) cos nx dx

bn = projsin nx

(
f
)

= 〈f , sin nx〉 =
1

π

∫ π

−π
f (x) sin nx dx
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Orthogonal bases

Important remark

Sometimes we have an orthogonal (but not orthonormal) basis, v1, . . . , vn.

There is still a simple way to decompose a vector v ∈ V into this basis.

Note that

{
v1

||v1||
, . . . ,

vn

||vn||

}
is an orthonormal basis, so

v = a1
v1

||v1||
+ · · ·+ an

vn

||vn||
ai =

〈
v, vi
||vi ||

〉
=

1

||vi ||
〈v, vi 〉 =

〈v, vi 〉√
〈vi , vi 〉

=
a1

||v1||
v1 + · · ·+

an

||vn||
vn

= c1v1 + · · ·+ cnvn, ci =
ai

||vi ||
=
〈v, vi 〉
〈vi , vi 〉

=
〈v, vi 〉
||vi ||2

M. Macauley (Clemson) Lecture 1.4: Inner products and orthogonality Advanced Engineering Mathematics 8 / 8

mailto:macaule@clemson.edu

