Lecture 2.1: The fundamental theorem of linear differential equations

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Definition

A first order differential equation is of the form $y^{\prime}=f(t, y)$.
A second order differential equation is of the form $y^{\prime \prime}=f\left(t, y, y^{\prime}\right)$.

Linear and homogeneous ODEs

A linear 1st order ODE can be written as $y^{\prime}+a(t) y=g(t)$. It is homogeneous if $g(t)=0$.
A linear 2nd order ODE can be written as $y^{\prime \prime}+a(t) y^{\prime}+b(t) y=g(t)$. It is homogeneous if $g(t)=0$.

Motivation for the terminology (1st order)

Consider the linear ODE $y^{\prime}+a(t) y=g(t)$. Then,

$$
T=\frac{d}{d t}+a(t)
$$

is a linear differential operator on the space \mathcal{C}^{∞} of (infinitely) differentiable functions. I.e.,

$$
T(y)=\left(\frac{d}{d t}+a(t)\right) y=y^{\prime}+a(t) y
$$

The kernel of this operator is the set of all solutions to the "related homogeneous $O D E$ ", $y^{\prime}+a(t) y=0$.

Definition

A first order differential equation is of the form $y^{\prime}=f(t, y)$.
A second order differential equation is of the form $y^{\prime \prime}=f\left(t, y, y^{\prime}\right)$.

Linear and homogeneous ODEs

A linear 1st order ODE can be written as $y^{\prime}+a(t) y=g(t)$. It is homogeneous if $g(t)=0$.
A linear 2nd order ODE can be written as $y^{\prime}+a(t) y^{\prime}+b(t) y=g(t)$. It is homogeneous if $g(t)=0$.

Motivation for the terminology (2nd order)

Consisder the linear ODE $y^{\prime \prime}+a(t) y^{\prime}+b(t) y=g(t)$. Then

$$
T=\frac{d^{2}}{d t^{2}}+a(t) \frac{d}{d t}+b(t)
$$

is a linear differential operator on the space \mathcal{C}^{∞} of (infinitely) differentiable functions. I.e.,

$$
T(y)=\left(\frac{d^{2}}{d t^{2}}+a(t) \frac{d}{d t}+b(t)\right) y=y^{\prime \prime}+a(t) y^{\prime}+b(t) y
$$

The kernel of this operator is the set of all solutions to the "related homogeneous $O D E$ ", $y^{\prime \prime}+a(t) y^{\prime}+b(t) y=0$.

Fundamental theorem of linear (homogeneous) ODEs

Let $T: \mathcal{C}^{\infty} \longrightarrow \mathcal{C}^{\infty}$ be a linear differential operator of order n. Then ker T is an n-dimensional subspace of \mathcal{C}^{∞}.

What this means

- The general solution to $y^{\prime}+a(t) y=0$ has the form

$$
\operatorname{ker}\left(\frac{d}{d t}+a(t)\right)=\left\{C_{1} y_{1}(t) \mid C_{1} \in \mathbb{C}\right\}
$$

Here, $\left\{y_{1}\right\}$ is a basis of the "solution space."

- The general solution to $y^{\prime \prime}+a(t) y^{\prime}+b(t) y=0$ has the form

$$
\operatorname{ker}\left(\frac{d^{2}}{d t^{2}}+a(t) \frac{d}{d t}+b(t)\right)=\left\{C_{1} y_{1}(t)+C_{2} y_{2}(t) \mid C_{1}, C_{2} \in \mathbb{C}\right\}
$$

Here, $\left\{y_{1}, y_{2}\right\}$ is a basis of the "solution space."
It should be clear how this extends to ODEs of order $n>2$.

Big idea

To solve an $n^{\text {th }}$ order linear homogeneous ODE, we need to (somehow) find n linearly independent solutions, i.e., a basis for the solution space.

Solving linear ODEs

Big idea

To solve an $n^{\text {th }}$ order linear homogeneous ODE, we need to (somehow) find n linearly independent solutions, i.e., a basis for the solution space.

Let's recall how to do this.

We'll start with 1 st order ODEs: solve $y^{\prime}+a(t) y=0$.

If you can't solve by inspection, then separate variables.

1. Solve $y^{\prime}-k y=0$.
2. Solve $y^{\prime}-t y=0$.

Remark

This always works, assuming we can evaluate $\int a(t) d t$.

Solving 2nd order homogeneous ODEs

Solving $y^{\prime \prime}+a(t) y^{\prime}+b(t) y=0$ can be hard or impossible for arbitrary functions $a(t), b(t)$.
One special case is when they are constants: $a(t)=p$, and $b(t)=q$.

Constant coefficients

To solve $y^{\prime \prime}+p y^{\prime}+q y=0$, guess that $y(t)=e^{r t}$ is a solution.

Example 1 (distinct real roots)

Solve $y^{\prime \prime}+3 y^{\prime}+2 y=0$.

Solving 2nd order homogeneous ODEs

Example 2 (complex roots)

Solve $y^{\prime \prime}-4 y^{\prime}+20 y=0$.

Summary

The general solution is a 2 -dimensional vector space.
Since $y_{1}(t)=e^{(2+4 i) t}$ and $y_{2}(t)=e^{(2-4 i) t}$ are independent, they are a basis for the solution space.

However, the functions

$$
\frac{1}{2} y_{1}(t)+\frac{1}{2} y_{2}(t)=e^{2 t} \cos 4 t, \quad \frac{1}{2 i} y_{1}(t)-\frac{1}{2 i} y_{2}(t)=e^{2 t} \sin 4 t .
$$

are also linearly independent solutions, and thus a different basis.
Therefore, the general solution can be expressed several different ways:

$$
\operatorname{Span}\left\{e^{(2+4 i)} t, e^{(2-4 i) t}\right\}=\operatorname{Span}\left\{e^{2 t} \cos 4 t, e^{2 t} \sin 4 t\right\} .
$$

We usually prefer the latter, and write an arbitrary solution as

$$
y(t)=C_{1} e^{2 t} \cos 4 t+C_{2} e^{2 t} \sin 4 t=e^{2 t}\left(C_{1} \cos 4 t+C_{2} \sin 4 t\right) .
$$

Solving 2nd order homogeneous ODEs

Example 3 (repeated roots)

Solve $y^{\prime \prime}+4 y^{\prime}+4 y=0$.

