Lecture 2.4: Undetermined coefficients

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

The main idea

Theorem

The general solution to y' + a(t)y = g(t) has the form

$$y(t) = y_h(t) + y_p(t) = \Big\{ C_1 y_1(t) + y_p(t) \mid C_1 \in \mathbb{C} \Big\},$$

where $y_p(t)$ is any particular solution to the original ODE.

Example 1

Solve the differential equation y' + 2y = 6.

Polynomial forcing term

Example 2

Solve $y' + 2y = 6t^2$.

Exponential forcing term

Example 3

Solve $y' + 2y = 6e^{3t}$.

Sinusoidal forcing term

Example 4

Solve $y' + 2y = 6\cos 3t$.

A "problem case"

Example 5

Solve $y' + 2y = 6e^{-2t}$.

Solving linear inhomogeneous ODEs

Summary

The technique we've been using is called the method of undetermined coefficients. It works as long as we can:

- (i) Solve the homogeneous equation.
- (ii) Find a solution by inspection or educated guess.

If we can't do (i), we're out of luck.

If we can't do (ii), then we have two alternative methods:

- 1. Integrating factor.
- 2. Variation of parameters.

These methods work as long as we can integrate $e^{\int a(t)}g(t)$.

When you can't guess a particular solution

Example 6	
Solve $y' + \frac{1}{t}y = 1$.	

2nd order inhomogeneous ODEs

Theorem

The general solution to y'' + a(t)y' + b(t)y = g(t) has the form

$$y(t) = y_h(t) + y_p(t) = \Big\{ C_1 y_1(t) + C_2 y_2(t) + y_p(t) \mid C_1 \in \mathbb{C} \Big\},$$

where $y_p(t)$ is any particular solution to the original ODE.

To prove this, just show that $y - y_p$ solves the homogeneous equation. (HW)

Method

To solve a 2nd order linear inhomogeneous ODE:

- 1. Solve the homogeneous equation: $y''_h + a(t)y'_h + b(t)y_h = 0$.
- 2. Find any particular solution $y_p(t)$ to the original equation.
- 3. Add these together: $y(t) = y_h(t) + y_p(t) = C_1 y_1(t) + C_2 y_2(t) + y_p(t)$.

2nd order inhomogeneous ODEs

More examples

- (i) Solve y'' + 3y' + 2y = 1.
- (ii) Solve $y'' + 3y' + 2y = -4t^2$.
- (iii) Solve $y'' + 3y' + 2y = 4e^{3t}$.