Lecture 2.4: Undetermined coefficients

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

The main idea

Theorem

The general solution to $y^{\prime}+a(t) y=g(t)$ has the form

$$
y(t)=y_{h}(t)+y_{p}(t)=\left\{C_{1} y_{1}(t)+y_{p}(t) \mid C_{1} \in \mathbb{C}\right\},
$$

where $y_{p}(t)$ is any particular solution to the original ODE.

Example 1

Solve the differential equation $y^{\prime}+2 y=6$.

Polynomial forcing term

Example 2

Solve $y^{\prime}+2 y=6 t^{2}$.

Exponential forcing term

Example 3

Solve $y^{\prime}+2 y=6 e^{3 t}$.

Sinusoidal forcing term

Example 4

Solve $y^{\prime}+2 y=6 \cos 3 t$.

A "problem case"

Example 5

Solve $y^{\prime}+2 y=6 e^{-2 t}$.

Solving linear inhomogeneous ODEs

Summary

The technique we've been using is called the method of undetermined coefficients. It works as long as we can:
(i) Solve the homogeneous equation.
(ii) Find a solution by inspection or educated guess.

If we can't do (i), we're out of luck.
If we can't do (ii), then we have two alternative methods:

1. Integrating factor.
2. Variation of parameters.

These methods work as long as we can integrate $e^{\int a(t)} g(t)$.

When you can't guess a particular solution

Example 6

Solve $y^{\prime}+\frac{1}{t} y=1$.

2nd order inhomogeneous ODEs

Theorem

The general solution to $y^{\prime \prime}+a(t) y^{\prime}+b(t) y=g(t)$ has the form

$$
y(t)=y_{h}(t)+y_{p}(t)=\left\{C_{1} y_{1}(t)+C_{2} y_{2}(t)+y_{p}(t) \mid C_{1} \in \mathbb{C}\right\}
$$

where $y_{p}(t)$ is any particular solution to the original ODE.

To prove this, just show that $y-y_{p}$ solves the homogeneous equation. (HW)

Method

To solve a 2nd order linear inhomogeneous ODE:

1. Solve the homogeneous equation: $y_{h}^{\prime \prime}+a(t) y_{h}^{\prime}+b(t) y_{h}=0$.
2. Find any particular solution $y_{p}(t)$ to the original equation.
3. Add these together: $y(t)=y_{h}(t)+y_{p}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)+y_{p}(t)$.

2nd order inhomogeneous ODEs

More examples
(i) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=1$.
(ii) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=-4 t^{2}$.
(iii) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=4 e^{3 t}$.

