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Some history

Ancient mathematicians dogmatically believed that only positive whole numbers could exist.

However, using basic arithmetic, they could create the negative numbers and the rational
numbers (fractions).

Obviously, we know now of the existence of irrational numbers. These cannot be expressed
as fractions, but there are fractions that are “arbitrarily close” to them.

Specifically, this means that they arise as limits of sequences of rational numbers.

For example, the number π is the limit of the following sequence.

x0 = 3
x1 = 3.1
x2 = 3.14
x3 = 3.141
x4 = 3.1415
x5 = 3.14159

...

As we know from calculus, an alternative way to express this is as a series (sequence of
partial sums):

π = 3 + .1 + .04 + .001 + .0005 + .00009 + · · ·
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Some history

Many students have a similar epiphany as the ancient Greeks when they learn about Taylor
series in calculus.

For example, the function ex =
∞∑

n=0

xn

n!
is the limit of the following sequence

f0(x) = 1

f1(x) = 1 + x

f2(x) = 1 + x + 1
2

x2

f3(x) = 1 + x + 1
2

x2 + 1
6

x3

f4(x) = 1 + x + 1
2

x2 + 1
6

x3 + 1
24

x4

f4(x) = 1 + x + 1
2

x2 + 1
6

x3 + 1
24

x4 + 1
120

x5

...

Big idea

Even though functions like ex don’t technically exist in the vector space of polynomials, we
can, for all intents and purposes, treat them like they do.

That said, we have to be careful regarding convergence. For example, the following formal
power series is not a real-valued function R→ R:

g(x) = 1 + x + x2 + x3 + x4 + · · ·
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Introduction

Recall the definition of a vector space: a set V (of vectors) and a set F (of scalars) that is

Closed under addition: v ,w ∈ V =⇒ v + w ∈ V ,

Closed under scalar multiplication: v ∈ V , c ∈ F =⇒ cv ∈ V .

The infinite-dimensional space R[x] of polynomials has basis {xk | k = 0, 1, 2, . . . }. That is,

R[x] = Span{1, x , x2, x3, . . . }.

Consider the vector space spanned by the following set of sine and cosine waves:

V = Span
{
{1, cos x , cos 2x , . . . } ∪ {sin x , sin 2x , . . . }

}
.

Think of these elements as smooth “sound waves.”

Just like how many functions such as ex are “arbitrarily close” to polynomials, there are
many 2π-periodic functions that are “arbitrarily close” to elements of V .

Examples include square waves, triangle waves, and much more.

Technically, we say that the vector space V is dense in the set Per2π(R).

Like we did with ex and R[x], we can for all intents and purposes, treat the set Per2π(R) as
a vector space with basis {1, cos nx , sin nx : n ∈ N} and allow infinite sums.
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Inner products

Back to Rn

Recall that once we defined an inner product on Rn, we were able to:

measure the lengths of vectors; ||v|| :=
√
v · v,

measure the angles between vectors; ](v,w) := cos−1
(

v·w
||v|| ||w||

)
,

project vectors onto unit vectors: Projn v := (v · n) n.

decompose a vector v ∈ Rn into components using an orthonormal basis:

v = a1e1 + · · ·+ anen = (a1, . . . , an) where ai = projei
(v) = v · ei .
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Definition

The inner product (“generalized dot product”) on Per2π(R) is defined to be:

〈f , g〉 :=
1

π

∫ π

−π
f (x)g(x) dx .

Proposition

With respect to this inner product, the set

B2π =

{
1√
2
, cos x , cos 2x , cos 3x , . . .

sin x , sin 2x , sin 3x , . . .

}

is an orthonormal basis for Per2π(R)!

Note that this just means that the following (easily verifiable) formulas hold:〈
cos nx , cos mx

〉
:=

1

π

∫ π

−π
cos nx cos mx dx = δnm =

{
1 n = m

0 n 6= m

〈
sin nx , sin mx

〉
:=

1

π

∫ π

−π
sin nx sin mx dx = δnm =

{
1 n = m

0 n 6= m

〈
cos nx , sin mx

〉
:=

1

π

∫ π

−π
cos nx sin mx dx = 0.
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Definition

The inner product (“generalized dot product”) on Per2π(R) is defined to be:

〈f , g〉 :=
1

π

∫ π

−π
f (x)g(x) dx .

Proposition

With respect to this inner product, the set

B2π =

{
1√
2
, cos x , cos 2x , cos 3x , . . .

sin x , sin 2x , sin 3x , . . .

}

is an orthonormal basis for Per2π(R)!

The utility of having an inner product

Now that we have an inner product on Per2π(R) and an orthonormal basis, we can

project vectors onto unit vectors: proju(x) f (x) := 〈f , u〉.

decompose a vector f ∈ Per2π(R) into components using our orthonormal basis B2π :

f (x) =
a0

2
+
∞∑

n=1

an cos nx + bn sin nx , where an = projcos nx (f ) = 〈f , cos nx〉

bn = projsin nx (f ) = 〈f , sin nx〉.
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Fourier series

Definition / Theorem

Let f be a piecewise continuous 2π-periodic function. The Fourier series of f is

f (x) =
a0

2
+
∞∑

n=1

an cos nx + bn sin nx ,

and the formulas for the Fourier coefficients are given by

an = projcos nx (f ) = 〈f , cos nx〉 =
1

π

∫ π

−π
f (x) cos nx dx

bn = projsin nx (f ) = 〈f , sin nx〉 =
1

π

∫ π

−π
f (x) sin nx dx

Remarks

These formulas hold for all n, including n = 0.

Even though the vector space spanned by {1, cos nx , sin nx | n ∈ N} technically only
consists of finite sums of sines and cosines, if one allows infinite series, this basically
works for piecewise continuous functions as well.

At times, it may be easier to integrate over [0, 2π] rather than [−π, π].
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Fourier series

Let Per2L(R) be the vector space of all real-valued 2L-periodic functions

V = Span
{
{1, cos πx

L
, cos 2πx

L
, . . . } ∪ {sin πx

L
, sin 2πx

L
, . . . }

}
.

Define an inner product on Per2L(R) by

〈f , g〉 :=
1

L

∫ L

−L
f (x)g(x) dx .

Definition / Theorem

Let f be a piecewise continuous 2L-periodic function. The Fourier series of f is

f (x) =
a0

2
+
∞∑

n=1

an cos(πnx
L

) + bn sin(πnx
L

),

and the formulas for the Fourier coefficients are given by

an = projcos(nπx/L)(f ) =
〈

f , cos nπx
L

〉
=

1

L

∫ L

−L
f (x) cos nπx

L
dx

bn = projsin(nπx/L)(f ) =
〈

f , sin nπx
L

〉
=

1

L

∫ L

−L
f (x) sin nπx

L
dx .

M. Macauley (Clemson) Lecture 3.1: Fourier series and orthogonality Advanced Engineering Mathematics 9 / 9

mailto:macaule@clemson.edu

