Lecture 3.3: Solving differential equations with Fourier series

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Motivation

Recall the method of undetermined coefficients to solve a 2nd order linear inhomogeneous ODE $y^{\prime \prime}+a(x) y^{\prime}+b(x) y=f(x)$:

1. Solve the related homogeneous equation: $y_{h}^{\prime \prime}+a(x) y_{h}^{\prime}+b(x) y_{h}=0$.
2. Guess the form of a particular solution $y_{p}(x)$.
3. Add these together: $y(x)=y_{h}(x)+y_{p}(x)$.

$f(x)$	guess
$e^{k x}$	$y_{p}(x)=a e^{k x}$
$c_{k} x^{k}+\cdots+c_{1} x+c_{0}$	$y_{p}(x)=a_{k} x^{k}+\cdots+a_{1} x+a_{0}$
$\sin k x$ or $\cos k x$	$y_{p}(x)=a \cos k x+b \sin k x$.

Question

What if the forcing term is a piecewise function like a square wave?

$$
\begin{array}{ll}
f(x) & \text { guess } \\
\hline \text { square wave } & y_{p}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}
\end{array}
$$

This is generally much easier than using Laplace transforms!

Example 1

Solve $y^{\prime \prime}+3 y^{\prime}+2 y=f(x)$, for the square wave of period 2: $f(x)= \begin{cases}1 & 0<x<1 \\ -1 & -1<x<0\end{cases}$

Example 2

Solve $y^{\prime \prime}+\omega^{2} y=f(x), \omega \neq n \pi$, for the square wave of period 2: $f(x)= \begin{cases}1 & 0<x<1 \\ -1 & -1<x<0\end{cases}$

