Lecture 3.4: Fourier sine and cosine series

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/
Math 4340, Advanced Engineering Mathematics

Motivation

When we study partial differential equations (PDEs), we'll see problems like this.

Example 1

Consider a metal bar of length $L=1$, insulated along its interior but not its endpoints, sitting in a 0° room. Initally, the bar is 100°. Find the function $u(x, t)$ that describes the temperature of the bar.

The function $u(x, t)$ must satisfy the following PDE called the heat equation:

$$
\underbrace{\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}}_{\text {heat equation }}, \quad \underbrace{u(0, t)=u(1, t)=0}_{\text {boundary conditions }}, \quad \underbrace{u(x, 0)=100}_{\text {initial condition }} .
$$

As we'll see, the "general solution" to the PDE subject to these boundary condtions is

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x) e^{-(c n \pi)^{2} t}
$$

The last step is to plug in $t=0$ and solve for the coefficients b_{n} :

$$
u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)=100, \quad \text { for } 0<x<1
$$

To do this, we must express the function $f(x)=100$, on $0<x<1$ as a Fourier sine series!

A Fourier sine series

Example 1

Express the function $f(x)=100$ as $f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)$ for $0<x<1$.

Even and odd extensions

Definition

Let $f(x)$ have domain $(0, L)$. There are several natural ways to make $f(x)$ periodic:

- the periodic extension of $f(x)$,
- the even extension of $f(x)$,
- the odd extension of $f(x)$.

Fourier sine and cosine series

Definition

Let $f(x)$ be a function defined for $0<x<L$.

- The Fourier cosine series of f is the Fourier series of the even extension of f.
- The Fourier sine series of f is the Fourier series of the odd extension of f.

Computations

Example 2

Let $f(x)=x$ for $0<x<1$. Compute the Fourier sine and cosine series of $f(x)$.

