Lecture 3.6: Real vs. complex Fourier series

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4340, Advanced Engineering Mathematics

Overview

Last time, we derived formulas for the complex Fourier series of a function.

Complex Fourier series

If $f(x)$ is a piecewise continuous $2 L$-periodic function, then we can write

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \frac{i \pi x}{L}}=c_{0}+\sum_{n=1}^{\infty}\left(c_{n} e^{i \pi n x} L+c_{-n} e^{-\frac{i \pi n x}{L}}\right)
$$

where

$$
c_{0}=\langle f, 1\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \quad c_{n}=\left\langle f, e^{\frac{i \pi n x}{L}}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-\frac{i \pi n x}{L}} d x .
$$

Here, we will see how to go between the real and complex versions of a Fourier series.
It's just a simple application of the following identities that we've already seen:

Euler's formula (and consequences)

- $e^{i \theta}=\cos \theta+i \sin \theta, \quad e^{-i \theta}=\cos \theta-i \sin \theta$,
- $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$.

From the real to the complex Fourier series

Proposition

The complex Fourier coefficients of $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}$ are

$$
c_{n}=\frac{a_{n}-i b_{n}}{2}, \quad c_{-n}=\frac{a_{n}+i b_{n}}{2} .
$$

From the complex to the real Fourier series

Proposition

The real Fourier coefficients of $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{\frac{i \pi n x}{L}}$ are

$$
a_{n}=c_{n}+c_{-n}, \quad b_{n}=i\left(c_{n}-c_{-n}\right) .
$$

Computations

Example 1: square wave

Find the complex Fourier series of $f(x)= \begin{cases}1, & 0<x<\pi \\ -1, & \pi<x<2 \pi\end{cases}$

Computations

Example 2

Compute the real Fourier series of the 2π-periodic extension of the function e^{x} defined on $-\pi<0<\pi$.

