Lecture 3.7: Fourier transforms

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/
Math 4340, Advanced Engineering Mathematics

What is a Fourier transform?

Definition

Suppose $f: \mathbb{R} \rightarrow \mathbb{C}$ vanishes outside some finite interval. Its Fourier transform is defined by

$$
\mathcal{F}(f)=\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x=\lim _{L \rightarrow \infty} \int_{-\pi L}^{\pi L} f(x) e^{-i \omega x} d x
$$

Suppose f vanishes outside $[-\pi L, \pi L]$. Extend this function to be $2 \pi L$-periodic. Note that

$$
\frac{1}{2 \pi L} \widehat{f}(n / L)=\frac{1}{2 \pi L} \int_{-\infty}^{\infty} f(x) e^{-i n x / L} d x=\frac{1}{2 \pi L} \int_{-\pi L}^{\pi L} f(x) e^{-i n x / L} d x=c_{n}
$$

Thus, we can write $f(x)$ as

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \pi \frac{n}{L} x}=\sum_{n=-\infty}^{\infty} \frac{1}{2 \pi L} \widehat{f}\left(\frac{n}{L}\right) e^{i \pi \frac{n}{L} x} .
$$

Let $\omega_{n}=\frac{n}{L}$ and $\Delta \omega=\frac{1}{L}$. Taking the limit as $\Delta \omega \rightarrow 0$ yields

$$
f(x)=\lim _{L \rightarrow \infty} \sum_{n=-\infty}^{\infty} c_{n} e^{i \pi \frac{n}{L} x}=\frac{1}{2 \pi} \lim _{\Delta \omega \rightarrow 0} \sum_{n=-\infty}^{\infty} \widehat{f}\left(\omega_{n}\right) e^{i \pi \omega_{n} x} \Delta \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i \pi \omega x} d \omega
$$

This is called the inverse Fourier transform of $\widehat{f}(\omega)$, also denoted $\mathcal{F}^{-1}(\widehat{f})$.

Example: a rectangular pulse
Consider a $2 L$-periodic function defined by $f(x)= \begin{cases}1 & -0.5<x<0.5 \\ 0.5 & x=0.5 \\ 0 & 0.5<|x|<L .\end{cases}$

- If $L=1$, compute its complex Fourier series.
- How does this compare to $L=2$? To $L=200$?
- What is its Fourier transform?

A "continuous" version of a Fourier series

Every continuous function $f:[-\pi, \pi] \rightarrow \mathbb{C}$ can be decomposed into a discrete sum of complex exponentials:

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x, \quad \text { let } \omega=1
$$

Every continuous function $f:[-2 \pi, 2 \pi] \rightarrow \mathbb{C}$ can be decomposed into a discrete sum of complex exponentials:

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\frac{1}{4 \pi} \int_{-2 \pi}^{2 \pi} f(x) e^{-i n x / 2} d x, \quad \text { let } \omega=1 / 2
$$

Every continuous function $f:[-200 \pi, 200 \pi] \rightarrow \mathbb{C}$ can be decomposed into a discrete sum of complex exponentials:

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\frac{1}{400 \pi} \int_{-200 \pi}^{200 \pi} f(x) e^{-i n x / 200} d x, \quad \text { let } \omega=1 / 200
$$

Now take the limit as $L \rightarrow \infty \ldots$
Every continuous function $f:(-\infty, \infty) \rightarrow \mathbb{C}$ can be decomposed into a discrete-sum integral of complex exponentials:

$$
f(x)=\int_{-\infty}^{\infty} c_{\omega} e^{i \omega x} d \omega, \quad c_{\omega}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x=\frac{1}{2 \pi} \widehat{f}(\omega)
$$

The sine cardinal (sinc) function

The Fourier transform of the "rectangle function" in the previous example is

$$
\operatorname{sinc}(x)=\left\{\begin{array}{cl}
1 & x=0 \\
\frac{\sin x}{x} & x \neq 0
\end{array}\right.
$$

This is called the "sampling function" in signal processing.

- Our Fourier transform and inverse transform:

$$
\widehat{f}(\omega):=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x, \quad \text { and } \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(x) e^{i \omega x} d \omega
$$

- The opposite Fourier transform and its inverse:

$$
\check{f}(\omega):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x, \quad \text { and } \quad f(x)=\int_{-\infty}^{\infty} \check{f}(x) e^{i \omega x} d \omega
$$

- The symmetric Fourier transform and its inverse:

$$
\widehat{f}(\omega):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x, \quad \text { and } \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{f}(x) e^{i \omega x} d \omega
$$

- The canonical Fourier transform and its inverse:

$$
\widetilde{f}(\xi):=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \xi x} d x, \quad \text { and } \quad f(x)=\int_{-\infty}^{\infty} \widetilde{f}(x) e^{2 \pi i \xi x} d \xi
$$

This last definition is motivated by of the relation $\omega=2 \pi \xi$ between angular frequency ω (radians per second) and oscillation frequency ξ (cycles per second, or "Hertz").

It is easy to go between these definitions:

$$
\widehat{f}(\omega)=2 \pi \check{f}(\omega)=\sqrt{2 \pi} \widehat{f}(\omega)=\widetilde{f}\left(\frac{\omega}{2 \pi}\right)=\widetilde{f}(\xi) .
$$

Recall that the Laplace transform of a function $f(t)$ is

$$
F(s)=\int_{-\infty}^{\infty} f(t) e^{-s t}
$$

To get its Fourier transform, just plug in $s=i \omega$:

$$
F(i \omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t}=\left.F(s)\right|_{s=i \omega} .
$$

Because of this, these transforms share many similar properties:

Property	time-domain	frequency domain
Linearity	$c_{1} f_{1}(t)+c_{2} f_{2}(t)$	$c_{1} \widehat{f}_{1}(\omega)+c_{2} \widehat{f}_{2}(\omega)$
Time $/$ phase-shift	$f\left(t-t_{0}\right)$	$e^{-i \omega t_{0}} \widehat{f}(\omega)$
Multiplication by exponential	$e^{i \nu t} f(t)$	$\widehat{f}(\omega-\nu)$
Dilation by $c>0$	$f(c t)$	$\frac{1}{c} \widehat{f}(\omega / c)$
Differentiation	$\frac{d f(t)}{d t}$	$i \omega \widehat{f}(\omega)$
Multiplication by t	$t f(t)$	$-\frac{d}{d \omega} \hat{f}(\omega)$
Convolution	$f_{1}(t) * f_{2}(t)$	$\widehat{f_{2}}(\omega) \cdot \widehat{f_{2}}(\omega)=\left(\widehat{f}_{1} * \widehat{f_{2}}\right)(\omega)$

